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Exploiting parallelism to achieve high performance invariably increases the resource require.
ments of a program. This is particularly serious under dynamic dataflow execution, because all
the potential parallelism in a program is exposed. The resource requirements can be excessive,
often leading to deadlock. This phenomenon is documented using parallelism and resource
profiles derived under an ideal dataflow execution model.

The thesis examines how resource requirements can be managed effectively by controlling the
ways in which parallelism is exposed. A mechanism for controlling parallelism in scientific
programs, called k-bounded loops, is presented. This involves compiling loops into dataflow
graphs in a manner that allows the maximum number of concurrent iterations to be set dy-
namically, when the loop is invoked. A policy for employing this mechanism is developed and
tested on a variety of programs. Through static analysis of the program, parametric resource
ezpressions are formulated and the potential parallelism is characterized. Based on this anal-
ysis, the program is augmented with resource management code that computes the k-bounds
by simple formulae, involving program variables and an overall resource parameter that reflects
the capacity of the machine. This approach is shown to be effective for containing the resource
requirements of scientific dataflow programs, while exposing adequate parallelism.
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Chapter 1

Introduction

One of the facts of life for high-performance computing is that more parallelism invariably means

more storage. We can observe this phenomenon on conventional machines to a limited extent,

but for dataflow machines it presents a very serious problem. The dynamic dataflow approach

exposes and exploits parallelism at all levels, regardless of program structure. As a result,

ample parallelism is available on a broad class of programs, however, the resource requirements

of many programs are tremendous. This thesis explores how the resource requirements of

dataflow programs can be maintained at reasonable levels by controlling the ways in which

parallelism is exposed. A mechanism for controlling parallelism is presented and a policy for

employing the mechanism is developed in the context of scientific applications. This mechanism

is called k-bounded loops.

To gain perspective on the problem at hand, consider some of the traditional techniques for

exposing parallelism in programs. Starting at the lowest level, pipelined instruction execution

allows parallelism to be exploited within a sequence of scalar instructions. In order to benefit

from this, the compiler breaks a basic block into a collection of independent computational

threads and then attempts to weave these togethez so as to maximize the distance between

the point where a register value is defined and the point where it is first used[43, 51]. This

requires that registers are available to support each of the concurrent threads, thus motivating

architects of such machines to enlarge the register set[50, 75]. Not surprisingly, these compilation

techniques stand in direct contrast to traditional techniques for minimizing register usage, which

attempt to place all uses of a register value as close as possible to the point of definition[2].

An important technique for increasing the number of independent threads is scalar renam-

ing, which replaces multiple updates of a single variable by definitions of multiple distinct
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variables[l]. Thus, parallelism is exposed at a cost of increased number of local variables. A

related technique, vector ezpansion, is crucial for exposing vector operations within innermost

loops( 64]. Scalar variables defined within a loop, including the temporaries implicit in arith-

metic expressions, are expanded into arrays of dimension equal to the number of iterations of

the loop. Here we begin to see significant resource expansion due to exposing parallelism.

Various techniques have been developed for exploiting outer loop parallelism on multi-

processors[32, 34, 61]. Basically, a program is represented by p concurrent tasks, one per

processor, operating out of a common global memory. These can cooperate in performing a

parallel loop by each performing a subset of the iterations[76]. At the very least, the amount of

storage used for the local variables of the loop is multiplied p-fold. If the amount of local variable

storage is large, e.g., if each iteration involves vector operations with vector temporaries[64],

the total storage increase can be dramatic.

More generally, if a dynamic form of task creation is employed[60, 82], such as fork or

parallel-call, the number of concurrently active tasks, and hence the total amount of task state,

can increase ezponentially over an equivalent program employing only sequential calls. It does

not matter whether the fork is explicit or implicit: if it is treated as a directive to perform

two tasks in parallel, a binary-recursive program expands into a tree of active tasks, while the

equivalent sequential program has only a single path down this tree active at any time - the

call stack.

Even the traditional techniques for exploiting asynchronous I/O increase storage require-

ments. Multibuffering requires that separate storage areas be provided for the working data and

data being transferred to or from secondary storage. Multiprogramming avoids the complexity

of buffered I/O on a single task, at the cost of maintaining several concurrent working sets.

To appreciate the severity of the resource problem in a dynamic dataflow context, imagine

employing all these conventional techniques simultaneously. Exposing parallelism at several

levels has a multiplicative effect on parallelism, but also on resource requirements. This might

appear to support the case for more traditional parallel architectures that support only specific

forms of parallelism, e.g., only vector parallelism or only outer loop parallelism. However, if

only a particular form of parallelism is exploited, the "Amdahl's Law" phenomenon manifests

itself, since large-scale applications often exhibit a variety of different forms of parallelism [58].

Accelerating only a portion of the program makes the remaining portion more critical. Thus,
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it is desirable to be able to exploit all forms of parallelism, but also to be able to control the

amount of parallelism, so the entire machine is kept busy, while resource requirements remain

reasonable.

The parallelism/resource problem can now be stated more precisely. In general, a parallel

program defines, for a given input, a partial order on the execution of its constituent operations.

(This partial order is manifest in a dataflow graph program representation, but present to some

degree in other representations as well[40, 55].) Different execution schedules exhibit different

amounts of parallelism with different resource requirements; more of the first generally implies

more of the second. Ideally, we want to arrive at a schedule or execution strategy that exposes

enough parallelism to keep our machine completely utilized, while remaining within its resource

capacity. If the execution schedule is too aggressively parallel, the program may deadlock for

lack of resources when a more conservative execution strategy wo-ld succeed. This hazard

has lead a number of researchers to consider what might be called resource-limited data-driven

execution[26, 78, 79]. The goal is to allow only as much parallelism as can be exposed within

a given resource budget.

In this thesis, we explore a particular form of resource-limited datafiow execution in the

context of scientific applications, i.e., programs dominated by iterative computations over large

regular data structures with known lifetimes. The basic idea is quite simple - loops are

compiled in a manner such that the maximum number of concurrent iterations can be set at the

time the loop is invoked. We call this approach k-bounded loops, as a dynamically determined

unfolding parameter, k, is associated with each loop[6, 27]. The k-bounded loop approach has

many virtues; it facilitates use of fixed-size tags in tagged-token dataflow architectures[7, 45, 52],

provides a natural mechanism for recycling resources within the dataflow graph, and makes

attractive a new class of dataflow architectures which avoid associative matching through an

explicit token store mechanism[74]. The k-bounded loop approach also permits a great deal of

flexibility, as the parallelism exposed in a program can be adjusted dynamically with each loop

invocation. However, with this flexibility comes the necessity of determining how each of the

loop parameters should be set for a given program. Usually the best setting will depend on the

machine configuration and the program inputs. We want to know whether it is possible to do

an adequate job of establishing these parameters automatically. This is the primary focus of the

thesis: developing a policy for determining loop k-bounds in large-scale scientific applications.
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The scope of this work is intentionally restricted to a specific class of programs under

a dataflow execution model. Thus, the particular meclanism developed for controlling loop

unfolding is specific to dynamic dataflow architectures and the issues we face are affected by

the language Id. Nonetheless, one may expect that a general understanding of the behavior

of bounded loop programs may well apply to more traditional execution models, at least as

parallelism is aggressively exploited in conventional programs[30, 65, 76].

Our focus is on scientific programs, so we restrict our attention to programs employing only

iteration and primitive recursion[661. We must assume, however, that the program involves

multiple, diverse phases, each with potentially heterogeneous computations, and potentially

overlapping in some fashion. Thus, rather than optimal scheduling for little kernels, the goal

is to control program unfolding in the large. The resources of concern are local data storage,

i.e., tokens or activation frames, and data structure storage. Each concurrent iteration offers

a certain amount of parallelism, but places a claim on some amount of each resource. We

will compile these programs in such a way that the program unfolds until it makes use of the

resources allocated to it, and then simply recycles resources within the graph until it completes.

1.1 Problem Definition

Our goal is to show that k-bounding loops is a viable means of managing parallelism to control

resource usage in scientific programs. The mechanism is clearly effective in controlling the

behavior of any loop in isolation[27], and it has had a strong influence on the evolution of

dataflow architectures[74]. Thus, in essence we must demonstrate a largely automatic technique

for assigning the k-bound parameters in real programs. Basically, we require that the k-bound

assignment prevent deadlock due to excessive resource usage, while exposing enough parallelism

to keep the machine busy. Thus, the ultimate goal of this work is the following.

Given a program and a machine configuration, i.e., storage capacity and number

of processors, provide a policy for assigning loop bounds, that keeps resource usage

within the capacity of the machine and exhibits adequate performance, say 75%

utilization of all processors.

Unfortunately, like many "systems" problems, this really involves a variety of interrelated

problems. Clearly, it requires that resource usage be sufficiently contained that the program
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does not deadlock. However, the performance and utilization delivered will also depend on a

host of lower level factors, such as how work is distributed over the machine, the scheduling

policies employed, the happenstance of network collisions, etc. Thus, this goal is really too

vague and involved to attack on one go. In this work, we want to focus on the question of

how program unfolding can be controlled so that adequate parallelism is exposed within certain

resource limits. To this end, we need to refine the problem and isolate the parallelism/resource

issue.

1.1.1 Execution model

A major point of difficulty in addressing the pragmatic goal above has to do with modeling

the behavior of real dataflow machines, or classes of such machines. The highly asynchronous

nature of this sort of machine complicates characterizing its execution behavior. Moreover, the

architectures themselves are evolving rapidly[55, 74]. In any case, the details of the machine

distract from the real problem, namely, controlling the behavior of programs. The primary

issue is the resource constraint, i.e., deadlock avoidance, while performance is the secondary

concern. Thus, it makes sense to trim away the awkward set of issues involved with realistic

machine configurations and performance characteristics. Instead, we focus on program behavior

under an idealized execution model, that assumes infinite processors, unit time operation, and

instantaneous communication. This model is well defined for dataflow programs and reflects

the inherent behavior of the program itself.

Since a dataflow program defines a partial order on the scheduling of its constituent opera-

tions, there is tremendous latitude in how operations are scheduled on any particular dataflow

machine. Therefore, given a program and a resource limit, we must provide a policy for assign-

ing loop bounds that honors the resource limit under all legal execution schedules. However,

we will judge the quality of the policy against the ideal model. Our goal is to produce a policy

which, for each value of the resource limit, achieves the minimum possible completion time

under the ideal execution model, i.e., minimum critical path length, within the resource limit.

Since the total number of operations is nearly independent of the k-bound assignment, at least

for reasonably good assignments, we can view minimizing the critical path and maximizing the

average parallelism as synonymous. An assignment that achieves near-optimal performance

under the ideal model is likely to demonstrate adequate parallelism on a real machine, if any
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assignment would. This thesis strives to develop good policies in this abstract context, leaving

as future work the investigation of how these perform on real machines.

1.1.2 Policy

We still must refine the notion of policy. At the very least, a k-bounding policy embodies an al-

gorithm for assigning loop bounds. The discussion above gives a specification for the algorithm

as a kind of optimization problem: given resource constraint r, determine a k-bound assign-

ment that maximizes parallelism within this constraint. So why not go solve this optimization

problem? Part of the answer is that the optimization problem is very poorly defined unless we

actually run the program to extract certain parameters, such as the size of the data structures

and the iteration counts for the loops. The cost function (resource usage) is non-linear and

may be dependent on input values to the program and even values computed within the pro-

gram. Even the space to optimize over and the objective function are highly data dependent.

Really, we are looking for solutions to a class of optimization problems, because we require

that programs be configuration independent: a single program should suffice for any reasonable

problem size on any machine configuration. We do not accept recompiling the program for

each problem size and particular machine configuration. Thus, much of the assignment must

be determined dynamically during program execution. As such, the assignment must be deter-

mined very quickly. We cannot afford to search or solve general constraint systems, but must

compute k-bounds according to simple rules. These rules embed higher-level policies, such as

"favor unfolding of this loop over that one," which are derived through analysis of the program.

We can distinguish classes of policies by when the k-bound assignment is determined. At

one extreme are static policies, which fix the loop bound for every loop, or possibly every

loop invocation before the program starts execution. This is generally the approach taken in

compiling FORTRAN programs for parallel machines. It requires that the size of the problem,

iteration counts, and the size of the machine be known at compile time. We do not want to

require such restrictions, although when the problem size is static we will exploit the opportunity

to do more detailed analysis at compile time and to reduce the amount of dynamic decision

making.

At the other extreme are dynamic policies, which use run-time machine status indicators,

e.g., the level of parallel activity and the availability of resources, to control program unfolding.
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Purely dynamic policies are very general, but are not very robust. The problem is that being

too eager at one point in the program may cause it to deadlock later on. In general, a huge

number of decisions are made, most of which are insignificant while few are crucial. Without

program analysis it is hard to focus on the significant decisions. In addition, the status of

the machine may be a poor indicator of future loads, causing the decision mechanism to make

incorrect choices.

Our approach falls between these extremes; the program is augmented at compile-time

with code that determines the k-bounds dynamically based on some set of resource limits,

program input values, and values computed within the program. It does not, however, take into

account dynamic machine status information. A conceptual view of the process is illustrated

in Figure 1.1. A program has a certain inherent behavior that is "bad" for a realistic machine,

because of inordinate resource requirements and possibly excess parallelism. We augment this

program to provide a new input, the resource limit r, and code for determning the various

loop bounds based on this limit. The additional code essentially restricts the partial order so

that the remaining legal execution schedules stay within the parameterized resource limit. This

augmented program, when supplied with limit r, has an inherent behavior that is reasonably

"good" for machines of a size related to r. Lower-level resource management problems, e.g.,

assignment of work and data to processors, scheduling, etc., can be addressed in the context of

this reasonably well-behaved program. This approach is applicable only to a restricted class of

programs, but is quite robust.

1.1.3 Refined problem

Based on this discussion, our problem can be restated as follows:

Given a program, provide rules for computing loop bounds, parameterized by re-

source constraints and certain program input values, that obtain close to mirLmum

critical path length within the resource constraints.

Let us loosely define a k -configuration for a program as a setting of the k-bound of each loop

invoked during the execution of the program. We will need a means of quantifying the worst-

case resource load for a k-configuration under any execution schedule. The schedule followed

by a realistic machine will certainly differ from our ideal model, but this change should not
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violate the resource constraint. Failure to establish a tight bound on the resource load is one

reason our policy may be sub-optimal, but also the execution schedule followed by a particular

machine may not exhibit the worst-case resource load. We will also need to characterize, at

least qualitatively, the behavior of a k-configuration in terms of average parallelism and overall

execution cost. Together, these give an indication of the "goodness" of regions of the immense

space of possible k-configurations.

Since we are interested in large-scale scientific applications, the policy must be derived with

tractable compilation techniques and implemented with reasonable efficiency. We will end up

with a policy for assigning loop bounds that is sensitive to some relatively small set of program

characteristics. The backbone of our analysis is the static invocation tree, which gives a crude

characterization of the relationships between the various loops in the program. It is built

under two basic rules of composition, nesting and adjacency. We start by developing a simple

behavioral model of bounded loops, and then consider nested loops of various sorts. Having

fixed a set of guidelines for dealing with nesting, we consider adjacency. Conditionals are dealt

with only briefly. Finally, we apply the rules developed and tested on small programs to a large

program.

1.2 Overview of the Thesis

In the remainder of this chapter, we place this work in the context of related research in the field.

In Chapter 2, we define an ideal dataflow execution model and identify the resources associated

with the execution of a datafiow program. This gives rise to a characterization of programs

by their ideal parallelism and resource profiles and provides a means to substantiate the claim

that dataflow programs exhibit ample parallelism, but inordinate resource requirements. We

define a more realistic execution model and show that restricting the processing power does

not improve the resource situation. However, by controlling program unfolding, the resource

requirement can be reduced without increasing execution time under the more realistic model.

In Chapter 3, we develop the basic mechanism for k-bounded loops and explore virtues of

the k-bounded loop approach. In particular, it provides a natural means of recycling a variety

of resources within the program itself, including data structures. Also, it suggests a path of

architectural evolution toward radically simpler dataflow machines.
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In Chapter 4, we formalize the notion of a loop bounding policy and lay a foundation for

policy development. We develop a simple behavioral model of unbounded and k-bounded loops,

i.e., what parallelism, resource requirements, and execution costs they exhibit. This gives rise

to the concept of useful unfolding, and our first important loop classification - loops with

limited useful unfolding. These tend to be inner loops and loops with very strong recurrences.

In Chapter 5, we take up a study of simple nested loops. From this we articulate trade-offs

in outer and inner loop unfolding, and demonstrate situations in which outer loop unfolding

is superior. We also observe that certain regions of the space of k-bounds are particularly

unattractive.

In Chapter 6, we examine the interplay of local storage limits and structure storage limits.

Here we see situations in which inner loop unfolding is clearly superior. This gives rise to a

simple classification scheme. We can characterize loops as: (1) having limited useful unfolding,

(2) unattractive to unfold, and (3) attractive to unfold. In many cases, outer loops with

deep dependencies that are hard to detect will be placed in the second category by virtue

of large resource requirements, when they properly belong in the first. However, the weaker

categorization is generally adequate to yield an effective policy.

In Chapter 7, we explore the problem of partitioning resources among adjacent loops. The

basic outcome is a notion of proportional allocation, although certain special cases are shown

to be important.

In Chapter 8, we bring these developments together into a coherent policy for assigning loop

bounds and perform a case study on a fairly large program to validate the policy. One outcome

of this study is the observation that detailed analysis is very important at the innermost level,

which is where it is also most applicable. Deep dependencies at the outermost levels are also

crucial, but difficult to catch through analysis. Fortunately, the programmer has the most

intuition at that level and can offer guidance through simple annotations. At middle levels,

where analysis is hard and the programmer is likely to have little intuition, we can generally

do well with rather crude analysis.

Finally, in Chapter 9, we take a critical look at the basic k-bounded loop approach and

examines its effectiveness as an instance of resource-limited data-driven execution.
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1.3 Relationship to Parallel Fortran Execution

The work in exposing parallelism in sequential FORTRAN programs has traditionally been cir-

cumscribed by the kind of parallelism the potential target machines could exploit. For vector

processors, the paramount goal is to expose inner loop FORALL constructs. In an MIMD context,

there is somewhat more flexibility, but parallelism can only be exploited at a single loop level,

in most cases. This must be an outer loop level in order to gain leverage over the sizable cost of

dispatching parallel operations[33, 81]. It is generally assumed that the portions of the program

that run in parallel are so large that the dispatch operation and even the rest of the program

are negligible[33, 47, 48]. A few recent machines (such as the Cray-Xmp and Alliant FX-8[56])

encourage program transformations that expose multiple concurrent vector operations. For

these transormations, the expansion of resource requirements is a significant concern.

Recent work in the parallel FORTRAN domain entertains scenarios more akin to the viewpoint

taken here. Through aggressive renaming, anti-dependence can be essentially eliminated, leav-

ing a representation of the partial order of data dependencies, much like a dataflow graph[30].

There are some subtleties as to what this means for data structures, but barring that point,

one might use this framework to examine the inherent or asymptotic parallelism in a program.

It provides a metric against which more conservative transformation policies can be gauged.

Also, it provides a means for assessing the cost of parallelism in terms of resources required.

Not surprisingly, the resource requirements can be tremendous in this scenario, much as they

are for dataflow programs[65].

On the other hand, it is interesting to examine the traditional parallel FORTRAN work

from the perspective developed here. In identifying a vectorizable loop of count n, we have

effectively ezposed n-fold parallelism. A pipelined vector processor can only obtain parallelism

Y, determined by the depth of the functional unit pipeline and the latency to memory. Thus,

in a simple pipelined model the asymptotic parallelism, as n --, o, is p. Half of this value is

obtained at n = p, and the increase is slow from there on[53, 67]. Usually, the performance

determining factor in such a machine is the rate at which the sequence of memory addresspz

can be generated. Dividing this into the time to perform the fetch-operate-store gives p. In

dataflow loops, both the address generation and the operation are explicit, and we arrive at a

similar formula for the useful unfolding of a loop and the obtained parallelism.
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In exposing the vectorizable loop of count n, we may have introduced vector temporaries

of length n through scalar expansion. By strip- rining[54] the loop into chunks of length k, we

can reduce the size of the temporaries to k. In effect, we have reduced the exposed parallelism,

bringing it closer to the amount that can be exploited. As we shall see for dataflow programs, the

resource requirements are proportional to the amount of parallelism that is exposed, regardless

of how much can be exploited. Historically, strip-mining was motivated by the presence of

vector registers, but it has the benefit of simplifying the storage management problem in some

regards. One can imagine compiling a program to run on a class of vector machines all with

the same instruction set, but with differing memory capacity and pipeline depth. For small

machines with shallow pipelines, we should adopt a small strip-mine value, whereas for larger

machines with deeper pipelines, we should adopt a larger value. For one-dimensional vector

operations of length n in the context of data structures of size n x n, this may seem insignificant,

but consider multiple vector processors that exploit parallelism at two levels or when parallel

operation is possible at all levels, as in the dataflow setting. Then we see the multiplicative

effect on resources.

There is a fairly strong relationship between the bounded loop execution explored here and

Cytron's theoretical work in limited-processor scheduling of Doacross loops[29]. He considers

execution of programs on an unbounded number of "virtual processors," where each loop iter-

ation can be assigned to a distinct virtual processor. For nested loops, the iterations for each

invocation of a loop are assigned to distinct collections of virtual processors, so parallelism

at several loop levels is considered. Dependencies between iterations are resolved by inserting

delays[28] so that an iteration does not access a value produced by another until that value is

present. He avoids taking a position on whether this requires explicit synchronization operations

or not.

Cytron's virtual processors correspond roughly to our activation frames. The model he

develops for loop behavior is similar to what appears in Chapter 4, and a similar conclusion

is reached, namely, that a given loop may have a natural limit on the number of concurrent

iterations. He makes a substantial effort to avoid what we call partial-wave effects when limiting

the number of processors. On the other hand, he "compiles in" the problem size and machine

size, where we leave these as parameters. He is forced to define a precise schedule from the

inside out, where we have more flexibility. He assumes the outer loop is the most advantageous
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place to exploit parallelism, whereas we are fundamentally concerned with cases in which this

is not so. We must address dynamic allocation, which Cytron does not consider, and deal with

a completely asynchronous environment.

Finally, some of the work in parallel FORTRAN execution could be applied to further im-

prove the behavior of dataflow programs. As the class of target parallel machines becomes

more diverse, a general theory of loop interchange is emerging[4]. We will see that under our

current approach to compiling to dataflow graphs, the parallelism available in innermost loops

is somewhat limited. It can be improved by static loop unrolling, but might also profit from

interchanges that move strong recurrences into the innermost loop. This may be particularly

important when a very high-level programming style is adopted and the programmer has not

been concerned with the organization of loop nests.

1.4 Related Work and Historical Perspective

Research in dealing with the parallelism/resource problem has a considerable history within

the functional language community. In this section we examine briefly the relevant pieces of

that work to establish a context for the results presented here.

1.4.1 Token-storage overflow

The concept of tagged-token dataflow architectures emerged during the late '70s at the Univer-

sity of California, Irvine[12, 14, 15] and the University of Manchester[46] after extensive work

at M.I.T and elsewhere in static dataflow architectures[24, 35, 36, 37, 38, 62, 80]. It was clear

that the most complex aspect of this model of computation was realizing the token match-

ing function efficiently. A number of groups embarked on projects to understand how large

this associative store had to be and how it could be implemented[5, 52, 83, 84]. The Manch-

ester group developed a prototype machine, using a parallel hash table and overflow unit[45],

while the group at M.I.T. developed a detailed simulator for the MIT Tagged-Token Dataflow

Architecture[9, 16, 211. The short answer to the question of adequate matching-store capacity

was, "too big." As the language tools advanced to a point where meaningful programs could be

compiled, it became clear that most problems exhibited very large matching-store requirements.

Key to understanding the matching-store requirements of programs is the concept of the
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dynamic ezecution tree[26]. If we consider each invocation of a user-defined function and each

iteration of a loop to be a "task," then the execution of a program defines a tree, where the

nodes are the tasks created during execution and the children of a node are the tasks it created.

Observe that multiple invocations within a task cause the tree to branch with fixed degree,

whereas loops cause branching of degree determined by the number of iterations. This tree

describes the entire execution history of a program on a given input; at any point during the

execution only a subtree of it will exist. Under sequential execution, the active subtree is a

single branch, described by the call stack. Under parallel execution the active subtree may

encompass the entire tree! In regard to matching-store capacity, observe that waiting tokens

serve a dual role; they correspond to registers where computation is active and serve as local

variables throughout the interior of the active subtree. Thus, it is easy to see how certain

program structures cause the matching store requirement to grow arbitrarily.

With waiting tokens viewed in this way, an interesting aspect of tagged-token dataflow

architectures is that registers and local storage are not managed by the compiler, but are

allocated dynamically by the hardware in an amount dependent on the particular execution

schedule, which is determined by the happenstance of asynchronous events during program

execution. The author's work[26] introduced a technique for computing the worst-case token

storage requirement over all possible execution schedules, based on linear programming. This

gave rise to the concept of bounded loops, as the linear program for a loop has no optimal

solution precisely when the loop has potentially unbounded unfolding. It was shown that by

adding auxiliary arcs to the dataflow graph, a loop could be forced to have bounded unfolding.

The way to reduce the matching store requirements of a program is to limit the breadth of

the active subtree. In analogy with the technique for controlling loop unfolding, auxiliary arcs

were proposed as a way to limit the static branching of the active subtree as well. The idea was

to compile two versions of the graph, one that allowed the child tasks to execute in parallel and

one that serialized them via auxiliary arcs. The version used for a particular invocation would be

determined by status of the machine at the time of invocation, i.e., level of parallel activity and

availability of storage resources. This approach has several problems. First, it is not possible,

in general, to serialize the execution of subtasks in a language with non-strict functions and

data structures[86]. Second, even if a valid order can be determined for a meaningful class of

programs, the policy for selecting which version to use is non-trivial[22]. Finally, the failure
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mode is catastrophic. If scheduling is too eager when the tree is unfolding, the active subtree

may consume so much of the resources that no single branch can extend far enough to reach

a point of completion and make more resources available. Thus, the machine deadlocks. This

can also occur when the selection criterion is fooled by a temporary period of low parallelism.

Generally, a parallel program may exhibit phases of ample parallelism and constriction points

where little parallelism is available. At a constriction point, there may be tasks that are ready

to be invoked, but will only allocate resources and then wait for the critical dependencies of the

constriction point to be resolved before making any real progress. A parallelism-based mode

selection criterion may allow extensive branching during such periods and thereby arrive at the

over-committed state discussed above. This phenomenon is much more likely under languages

with non-strict functions and data structures.

1.4.2 Halstead's task queue

Halstead observed the parallelism/resource problem independently in the context of Multi-

lisp[60]. While parallelism is explicit in Multilisp, in writing a program the programmer must

take a position on whether a particular invocation or expression is to be evaluated in parallel or

not. Halstead notes that for binary recursion under fair scheduling the parallel formulation can

require exponentially more storage than the sequential formulation. This is again an execution

tree argument. Sequential execution implements a depth-first traversal of the execution tree,

while parallel execution tends toward a breadth-first traversal. His solution was to introduce a

simple "unfair" bias toward depth in the definition of the parallel call.

The idea starts with the assumption that a processor executes a single task at a time, and

that ready tasks are maintained in a system-wide task pool, represented by a collection of

stacks[59]. Each processor maintains its own task queue, using a LIFO discipline, but an idle

processor can "steal" tasks from other queues. The definition of the parallel call is such that

the child continues execution on the processor that executed the call, while the parent that

made the call is pushed back onto the pending task queue. Thus, if no processors are idle, the

parent is suspended and, hence, cannot spawn additional children. Meanwhile, the child may

be superseded by its children and execution tends toward a depth-first traversal. If a processor

becomes idle, it takes the task at the top of its queue or steals a pending task from another

queue, if its queue is empty. Thus, an idle processor may steal the suspended parent and resume
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it while the child is executing.

For a single loop, perhaps represented as tail-recursion, that invokes some simple function,

we can see how this approach might achieve the bounded loop behavior we desire, with one

concurrent iteration per processor. The loop task spawns the function and is suspended until

some idle processor reawakens it. The function for the next iteration is then spawned on that

processor and the loop task is again suspended. This continues until a function invocation is

spawned on each processor.

However, in practice the situation is more complicated. Calls are not the only reason

that a task may suspend. With non-strict data structures, which can be implemented by

futures[60], producers and consumers interact across different branches of the execution tree.

Thus, the child may suspend temporarily and reawaken the parent. The parent may then spawn

additional children, which may allocate resources even though the data they require have not

been computed. This can give rise to the over-reaction in periods of low parallelism discussed

above. Moreover, once the the depth-first ordering of the task queue is disturbed, a critical task

may get buried in the queue and thereby cause the mechanism to break down. The child that

was temporarily suspended may not be re-enabled until the parent has spawned off all its other

children, and their children, and so on. The implementation of the task pool as a collection

of local queues, potentially undermines the delicate ordering of suspended tasks. However, it

also reduces the likelihood of a critical task remaining buried indefinitely. In summary, while

the bias in the parallel call is an interesting mechanism, it has subtle, incompletely understood

effects. In particular, it is unclear how effectively it contains the resource requirements of

large programs in the presence of non-strict data structures. It makes no bottom-line resource

guarantee.

1.4.3 Token queue techniques

The dataflow group at Manchester University explored a variety of techniques for controlling

parallelism by modifying the low-level instruction scheduling mechanism. One approach was

to maintain separate queues for instructions with one input and for those with two. Under the

assumption that instructions have at most two outputs, the first category can never decrease

the number of tokens in existence, while the second can never increase it. Instructions are

scheduled from one or the other queue based on some measure of the activity level. This
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approach does reduce the token storage requirements, but does not overcome the fundamental

tendency toward breadth-first unfolding of the execution tree[78].

A second approach stemmed from the observation that a token stack, as opposed to a

queue, gives preference to newly created activities. For recursive constructs this introduces a

bias toward depth, something like Halstead's parental suspension technique. Unfortunately, for

loops it tends to allow all the iterations to come into existence concurrently before any of them

perform any useful work. This dichotomy motivated Sargeant's Intelligent Token Queue[79].

The idea was to switch the scheduling discipline dynamically, so that it would be stack based for

recursive constructs and queue based for iterative ones. To reduce the complexity somewhat,

switching was to be performed at the task level, rather than between individual instructions.

This met with little success in practice[78].

1.4.4 Ruggiero's coarse-grained throttle

Ruggiero rejected these fine-grained mechanisms in favor of one that operates at the execution

tree level[78]. The idea is to maintain a data structure describing the active portion of the exe-

cution tree. Requests to initiate a new task are deferred if the activity level is sufficiently high,

and recorded at the appropriate place in the representation of the active subtree maintained

by the resource management system. When the activity level falls below some threshold, the

lowest, leftmost pending request is granted. Loops in this machine are driven by "proliferate"

operators, which produce all n values, say, of the iteration variable. These are made to produce

values in small chunks and must go through a task request in between. This approximates the

effect of k-bounded loops to some extent, but the resource management system is still making

a huge number of scheduling decisions on fairly small items.

Although experimental data from a small set of programs looks encouraging, it is based on

programs in a language setting that is considerably more restrictive than that in Id, which we

are addressing. In particular, functions and data structures are strict in SISAL[69]. Ruggiero's

approach avoids the problem of losing the ordering tasks within the tree, but at a cost of

considerable complexity. In theory, it is still subject to the hazards of over-eager initiation and

over-reaction in periods of low parallelism. Moreover, unlike parental suspension, deferring a

request does not prevent the requester from making additional requests. We might consider a

loop which invokes a task that consumes and produces successive versions of a non-strict data
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structure in each iteration, such as a relaxation algorithm. All the iterations of the outer loop

will unfold, presenting a huge number of task requests and data structure allocation requests.

Only those pertaining to the early iterations are meaningful. We will see in Chapter 8 that, in

fact, the request stream can be very noisy; a large fraction of the tasks are uninteresting and

could be dealt with by static analysis.

Although we focus on a technique that pertains to a restricted class of programs and inten-

tionally does not take into account run-time activity levels, certainly an important avenue of

future research is the fusion of this with some kind of dynamic, execution tree based approach.

1.4.5 Sarkar's partitioning

Sarkar's work in the partitioning and scheduling of parallel programs[81] deals with controlling

parallelism indirectly, in the process of addressing various machine related issues. His approach

is essentially to unfold the program at compile time and then to fold it back up into a statically

determined number of tasks. Each task is essentially sequential. This approach breaks down for

a non-strict language[86]. His partitioning criterion accounts for data structures in so far as it

treats them as large objects that traverse program arcs, so the size must be estimated in order

to estimate communications bandwidth. It does not deal with storage requirements directly,

nor with structures that reside in some form of storage. The basic thrust of his approach is to

treat the entire execution of the program as static, whereas we try to perform static analysis

in order to understand its dynamic behavior.

The interesting aspect of the partitioning work from the viewpoint of controlling paral-

lelism is the attempt to split tasks where there would otherwise be a parallelism bottleneck,

or constriction point. The figure of merit used is the number of potentially concurrent tasks.

Unfortunately, the data presented here indicates that in many cases a large number of tasks

exist concurrently, while only a few are truly active.

1.4.6 Our approach

Our work falls somewhere in between the various efforts discussed above. We perform a sub-

stantial amount of static analysis in order to understand the dynamic behavior of the program

as a whole. The results of that analysis are used to integrate resource management code into

the program itself, so that execution is controlled in a quasi-dynamic fashion, although we do
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not take run-time machine status indicators into account. In effect, the kinds of policies we de-

velop start with all loops tightly constrained and selectively relax these constraints so as to get

near-maximal parallelism, ignoring communication costs, within hard resource constraints. The

quality of the analysis affects performance, but not correctness. We may err by overestimating

the resource requirement, in which case some resources are squandered, or by underestimating

a dependence, in which case resources are invested where they are poorly utilized.

The domain of programs we study is restricted to what traditionally encompasses scientific

applications, although the language paradigm is very powerful. The main instrument of mea-

surement is an idealized execution model. The "knobs" we have to turn in controlling program

unfolding are the number of concurrent iterations of each loop. Our goal is to develop an un-

derstanding of the effects of these knobs and to capture this understanding in a coherent loop

bounding policy.
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Chapter 2

Characterizing the Inherent
Behavior of Dataflow Programs

In this chapter, we present an idealized dataflow execution model, under which we later exam-

ine the behavior of various k-bounding policies. Parallelism profiles and resource profiles are

introduced as a means of characterizing the inherent behavior of programs. Through several

examples, we argue that a broad class of programs exhibit ample parallelism when expressed

in this framework, because parallelism is exploited at all levels. However, the resource require-

ments of these program can be exorbitant. We define a more realistic finite-parallelism model,

and observe that resource requirements remain large when little of the potential parallelism is

exploited.

2.1 An Ideal Execution Model

The U-interpreter[13] provides a formal model for dynamic (tagged-token) dataflow computa-

tion. In that model, data values are carried on tokens, which also carry a tag. The tag specifies

the particular node in the dataflow graph that is to be executed, and uniquely identifies an

instance of that node. A node is permitted to execute, or fire, when tokens with matching

tags are available on each of its input arcs, and upon firing a result token is produced for each

output arc. The behavior of a node is determined entirely by the input values, the tag, the

operation associated with the node, and the local connectivity of the node. Thus, a program

graph defines a partial order on scheduling of instructions for a given input. High-level con-

structs in functional languages are captured by a specific set of graph schemas, with a simple
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rule of composition. It has been shown that the programs represented by these graphs are

deterministic, i.e., all legal execution schedules produce the same results, and that the graphs

are self-cleaning, i.e., no tokens are left in the graph upon completion[14]. Furthermore, this

model is maximally parallel, in a technical sense[15].

To characterize the inherent behavior of programs, we consider a particular, well-defined

execution schedule, corresponding to fully eager execution. This is specified by the following:

1. All operators take unit time. Tokens produced by an operation appear on the output arc

one time unit after the node fires.

2. Communication is instantaneous. Tokens produced by an operation are available at the

successor nodes as soon as they are produced.

3. An operator ezecutes as soon as all its input data are available. This implies that any

number of operations can be performed in a single step, any number of data values can

be transmitted between steps, and any number of tokens may be waiting for partners.

4. The value produced by an I-structure fetch (I-fetch) operation is available one time unit

after the later of the I-fetch and the I-store for the particular element accessed.

This definition is summarized in Figure 2.1. The results of an operation are produced

one time unit after the latest of the input tokens becomes available and become available at

destination operations immediately after they are produced.

tl t2 jI I

=> I I =>1± max(tl,t2)

1 0 + 1 + max(tl,t2)

Figure 2.1: Time Behavior of the Basic Firing Rule in the Ideal Model

The parallelism profile for a given program on a given input is a function, pp(t), which

gives the number of operations fired at each step t under this ideal execution model[10]. The
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execution time, denoted tro, is the step beyond which pp(t) is uniformly zero. Because all

operations execute at the earliest possible time, this is the length of the longest chain of data-

dependencies in a program, i.e., the length of the critical path. The area under the curve pp(t)

is simply the total number of operations executed, denoted by r, to indicate the number of steps

required with parallelism of one. The ratio of these is the average parallelism in the program,
A

Pave = ,/ r'.

To illustrate these definitions a simple example is given in Figure 2.2. The right-hand

portion shows an arithmetic expression in Id and its corresponding dataflow graph. The upper-

left portion shows the parallelism profile for this graph, labeled to indicate when particular

nodes fire.

pp(t) {x = 2*2;

y = x*x + 3*5;

+ z = 1+2

IN

S(x + y)*(y - z)}

F + + t

O 1 2 3 4 5 6 22 35 12

T(t) x z

2

I X+

5 x t2 y

3 ti ti X+

2 x X y

2 z z

0 1 2 3 4 5 6

Figure 2.2: Id Expression, Dataflow Graph, and Associated Parallelism and Token Profiles.

It is also possible to extract a resource profile for various resources under ideal execution.
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Each token carries a data value, and thus implies a claim on storage. The number of tokens

in existence at the start of each step gives a token-storage profile, characterizing this resource

requirement. This is shown in the lower-left portion of Figure 2.2. If we assume that tokens

reside in some matching-store until their partner(s) become available, it make sense to construct

a waiting token profile, counting only those tokens in existence which await a partner; this profile

is indicated by the bold line in the token profile. We will be interested in a variety of resource

profiles derived from ideal execution of real dataflow programs.

It should be noted that in making this execution model precise, including its time behavior,

we have effectively made it synchronous. In a single step, all enabled activities fire, and in

the next step all activities enabled by the data values produced in that step will fire. This

is somewhat at odds with the practical motivations for dataflow graphs as a parallel machine

language, namely, that the execution order is able to adapt dynamically to asynchronous events,

such as varying execution times for primitive operations, unpredictable delays due to network

contention, and the like[17]. In the ideal model, we have eliminated all sources of asynchrony by

assuming unbounded processing power, communication bandwidth, and storage capacity with

unit-time operations and zero latency. We will not, however, take advantage of this synchronous

interpretation in any way; the graphs considered are suited for general, asynchronous execution.

To provide a better feeling for the dynamic nature of dataflow execution and gain some

insight toward loop unfolding, we consider one more small example, a simple loop that computes

the inner product of a row and a column of two matrices. The Id code for this is shown below.

The dataflow graph for this loop is shown in Figure 2.3. The loop schema has a bank of L-switch

nodes, one for each value circulated from one iteration to the next, controlled by a common

predicate. A wave of tokens at the input to the L-switches is steered into the loop body, if the

predicate evaluates to TRUE, and eventually produces a new wave for the next iteration. As

soon as the predicate is evaluated, the tokens for the next wave can begin entering the loop

body, even though previous iterations may still be active. The tag includes an iteration number

to distinguish tokens belonging to different iterations, which the L-switch increments on tokens

sent into the body.

DEF IP A B s i j - {sum - 0
IN {FOR k <- 1 TO a DO

NEXT sum - sum + A[i,kJ*B[k,j];

FINILLY suml);
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The IP loop has two circulating values, k and sum. Each is a linear recurrence, with sum

also dependent on k. Note, several instructions reference loop constants, indicated by labeled T

inputs; these are variables defined outside and referenced within the loop. In this example, the

descriptors for the two matrices A and B, and the scalars i, j, and s are loop constants. They

are associated with the loop invocation as a whole via explicit constant-store operations in the

prologue of the loop (not shown). Matrices are stored in row-major order, so part of the index

calculation for AEi£k] has been lifted out of the loop, forming another loop constant. The W

node should be treated as an identity operation for the moment; its role will be explained later.

The merge nodes at the top of the loop, denoted by ®, are not actually operations, but rather

indicate that two arcs are connected to the same input port.

The lower portion of Figure 2.3 shows the parallelism and token storage profiles for this

graph, assuming a = 3 and the predicate (node 1) first fires at time 0. Node numbers are shown

in the profiles to aid in following the explanation. Node 2, the M, fires at time 1. The two

L-switches fire at time 2, producing tokens with iteration number 1. At time 3, the increment

fires (node 5), producing the next value of k, and the first parts of the two index calculations fire

(nodes 6 and 7). At time 4, the predicate fires again, the I-fetch against A fires, along with the

second part of the other index calculation. From this point on, the second iteration overlaps

with the remainder of the first. Operations belonging to the even iterations are outlined in

bold lines to highlight the overlap. At time 6, the L-switch for k fires, producing a token with

iteration number 2. The other L-switch does not fire until time 8, at which time the predicate

fires for the third time. The schedule repeats every 4 time units, until the predicate turns

FALSE and the last wave drains out of the loop. Here we can see the automatic loop unfolding

under data driven evaluation. The k loop gets one iteration ahead of the sum loop, while a

wave of tokens moves through the fetch-and-multiply portion of the graph. After this point,

summations are formed at the rate index values are generated, and we see a steady resource

load of six tokens. In more realistic scenarios, e.g., if the floating-point operations took longer,

if latency were experienced in fetching the elements of the matrices, or if the I-fetches were

deferred (discussed below) because the data was not available, a greater amount of unfolding

would occur automatically.
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Figure 2.3: Loop Graph for IP and Associated Profiles
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2.2 Parallelism and Resource Profiles for Id Programs

We turn now from simple examples with hand-constructed profiles to larger programs com-

piled from a high-level language and profiles constructed by executing the program on a graph

interpreter[18]. We briefly outline the basic graph schemas and essential resources.

2.2.1 Graph generation

The dataflow graphs we consider are compiler generated from the high-level language Id [71, 85].

We explain the salient aspects of these graphs, along with certain subtleties, in order to place

the empirical data presented later on a sound footing. As such, we must touch on a variety

of low-level technicalities. The higher-level points to be gleaned are these. Given a dataflow

graph and a given input, the profiles we construct are precise; they are not obtained through

analysis or approximation. There is, however, a certain bias introduced in the generation of

the graphs themselves, due to the particular schemas and compilation techniques employed.

We desire the textual representation of a program to be as precise a description of its dataflow

graph as possible. For example, the generation of an arithmetic sequence of values by iteration

and by binary recursion are expressed differently. Transformations from one to the other should

be viewed as a source-to-source transformation at some higher level, as should optimizations

which involve algebraic identities, e.g., strength reduction. Most importantly, no arbitrary

constraints are placed on the kinds of parallelism that can be expressed and exploited. The

language is block structured, where all blocks are non-strict, so the body of a user-defined

function, loop, conditional, or arithmetic expression can begin Zxecution as soon as any of its

inputs are available. Moreover, it can execute in parallel with its parent or surrounding context.

This allows parallelism to be exploited at all levels. Even data structures are non-strict, so

producers and consumers can execute in parallel. There is no need for compiler analysis to

uncover parallelism; it is expressed directly in the program and extracted automatically by the

machine. In fact, it is generally difficult to determine a sequential ordering for an Id program

at compile time[86]. Program and data are separate. Graphs are re-entrant.

Only unary and binary operations are permitted, in order to limit the complexity of the

matching operation. No hard limit is placed on the number of output arcs of a node, i.e., the

number of copies of the result to be generated, however, operators that produce a dynami-
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cally determined number of results, such as the Manchester machine's proliferate[44], are not

permitted. The fan-out of a node is basically the number of right-hand side occurrences of

the corresponding variable in the text of the program. In order to detect termination of an

invocation, all nodes have at least one output, although the output may be merely a signal

indicating that the node has fired.

Each of the schemas discussed below are well-behaved, in the sense that a single wave of

tokens on the input arcs produces a single wave of tokens on the output arcs, and when a token

emerges on every output arc, no tokens remain in the graph. The graphs generated by legal

composition of these schemas are also well-behaved. Thus, we do not consider arbitrary graphs,

but only a restricted class of graphs generated from the high-level language Id.

Arithmetic and logical expressions are represented by the natural directed acyclic graph, as

illustrated in Figure 2.2. Conditional expressions employ a switch operation, which steers its

data input to one or another set of output arcs, based on a control input. Each value used in

either arm of a conditional is steered through a switch, controlled by the predil,'te alue. Once

the predicate is determined, values enter the appropriate arm of the conditional in whatever

order they become available. The arms can be arbitrary well-behaved graphs. Unused outputs

within the conditional are reduced in a tree to produce an additional signal output[26, 85].

Each user-ciefined function or nested loop in the program is represented as a separate graph,

called a code-block. Functions in Id are non-strict and can begin execution before any arguments

are available. Invocation of a code-block involves acquiring a contezt, or unique identifier, which

is carried by all tokens belonging to the particular invocation. Arguments are delivered to the

new invocation by a send operation, which places the context identifier for the invocation in

the tag part of its input token. Activity is triggered within the new context as each of the

operands arrive. The computation within a function can proceed in parallel with computation

of the arguments to the function. Results are similarly delivered to the parent context via send

operations.

The basic structure of the loop schema is illustrated by Figure 2.3, above. The loop body

and predicate can be an arbitrary well-behaved graphs, where the predicate produces a single

boolean result. A bank of L-switches steers waves of values into the body, as determined by the

predicate, and increments the iteration numbers on tokens sent to the body to distinguish them

from logically previous iterations. Each of the L-switches fires independently, so the loop values
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need not circulate in well-defined waves. Some loop values may get many iterations ahead of

the others, as we observed in constructing the parallelism profile for the inner product loop.

Values which are used within a loop, but constant over all iteration of the loop are not

circulated, but placed in a special loop-constant area before the first iteration is allowed to

begin. Thus, loops are strict in the loop-constant arguments. The language treats all iterations

as strict, so an iteration may depend only on logically previous ones. This subtlety is key for

k-bounding. For the purposes of constructing resource profiles, we say an iteration starts when

the N fires, delivering the predicate value for the iteration to the bank of L-switches, and ends

when no tokens remain for the iteration. The basic graph schemas are structured so that it is

possible to detect completion in this sense.

2.2.2 Resources

The resources associated with an executing dataflow program differ somewhat from more con-

ventional settings. Token storage is the most apparent resource, because it is manifest in the

graph; the other resources require more explanation. As mentioned above, associated with each

invocation of a code-block is a context. The context is allocated by the parent, prior to sending

arguments, and deallocated when all results, including the termination signal, are returned[85].

Thus, contexts correspond roughly to stack frames in a conventional language implementation.

The primary difference is that the collection of extant contexts form a tree[26], rather than a

stack, and the entire tree is active, not just the leaves. A context is a resource in two respects.

First, it denotes a region of the tag space used for synchronizing operations within an invoca-

tion. Secondly, storage may be associated with the context directly. In the MIT Tagged-Token

Dataflow Architecture, each context has an associated code-block register, containing a pointer

to the graph and to a constant data area[9].

As remarked above, an invocation of a loop code-block may involve many concurrent iter-

ations, and these are distinguished by an iteration field in the tag. Although allocation and

deallocation is not explicit for iterations, as it is for contexts, each iteration does place an im-

plicit claim on certain resources -it implies use of a certain region of the tag space and at any

time a number of tokens are extant for each active iteration. We will see in a later chapter that

k-bounded loops allow this iteration field to be kept to a fixed size. Once the tag space is used

in a fairly dense manner, the next logical architectural step is to equate a tag with an address.
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This idea has been thoroughly developed by Papadopoulos in his Explicit Token-Store (ETS)

dataflow architecture[74]. In the ETS approach, each active acyclic code-block invocation and

each concurrent iteration has an associated activation frame, providing local storage for tokens

and constants. Since frames subsume the role of contexts, the two forms of local storage we

consider are waiting tokens and activation frames.

Finally, arrays in Id are represented as I-structures[19], i.e., sequences of write-once slots.

An I-structure is explicitly allocated and filled. It should be viewed as residing in storage, not

as a conglomerate of values on an arc. It is a non-strict data structure, as it can be used before

it is completely defined. Initially, each slot is empty, to be filled by an I-store operation. If a

fetch for a slot occurs before the corresponding store, the fetch is deferred until the store takes

place. This gives rise to the subtlety addressed by the last item in our description of the ideal

execution model - the result of a fetch is available one time unit after the later of the I-fetch

and the corresponding I-store. For the purposes of constructing I-structure storage profiles, a

structure is in use from the time it is allocated until the time it is deallocated. Since there is

no automatic storage reclamation in the graph interpreter used to construct execution profiles,

I-structure profiles are primarily suggestive of the pattern of allocation.

2.3 Examples

In this section we illustrate the level of potential parallelism present when parallelism is exposed

at all levels through several example programs. In the process, we build an understanding of

the parallelism/resource problem.

2.3.1 Matrix-multiply

The first Id program we consider is a simple matrix multiplication example (shown below) using

the standard triply nested loop formulation, where C[i,j] is the inner product of row i of I

and column j of B computed by IP (discussed above).

This example is small enough that one can develop reasonable intuition and check that the

results are meaningful, and yet it intimates the power of our method of characterizing program

behavior.
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DEF MatrixMult I B n a m =
{c = Tmatrix((1,n).(1,m));

{FOR i <- 1 to n do

{FOR j <- 1 to m do
cij - IF I B 5 i j}}

in c);

Figure 2.4 shows the ideal profiles for this program on two 16 x 16 matrices. In the upper

portion is the parallelism profile, expressed as the number of concurrent operations per step.

Also shown is the number of floating-point operations. This program has r, = 75,819 and

=, = 264. Thus, P,, = 287, about 1/3 of the peak parallelism (P,a. = 904). We can see that

parallel activity is not generated instantaneously; it takes a while for the full parallel activity

to build up and also for this activity to taper off. The algorithm specifies n 2 independent

inner products, each involving a linear recurrence of O(n). This correlates with the profile, and

we may conclude that parallelism is effectively exploited in both outer loop levels. When the

problem is scaled to 32 x 32 matrices the profile maintains the same general shape, reaching

P,az = 3,404 with -r, = 456 (roughly double) and Pave = 1, 127. In fact, we will argue in

Chapter 5 that r for this program tends toward 12n, as n increases.

The lower portion of Figure 2.4 shows three resource profiles for this program: waiting

tokens, activation frames, and I-structure storage. The last of these is simply the size of the

result matrix. The other two are roughly proportional to the amount of exposed parallelism,

with two tokens and one frame per operation (Ama = 915, Wmaz = 2,187). This is not

surprising, since each active operation requires storage for its arguments, but one might ask

how this changes when the machine can only exploit a fraction of the exposed parallelism. We

will see below that under fair scheduling the resource requirements remain essentially unchanged

in this situation.

The parallelism profile shown in Figure 2.4 describes the inherent behavior of this particular

formulation; it is not necessarily the maximum parallelism that can be achieved in multiplying

matrices. If we intended to compute the inner product as a binary recursive tree, we could do

so, but it would be expressed by a different formulation, as shown by rip below. The profiles

for Matrix Multiply using this version of the inner product on 16 x 16 matrices are shown in

Figure 2.5. The critical path is reduced from 264 to 238, and the total instruction count is

Issentially the same, giving Pav, = 311. The resource requirement is larger in the recursive

version, (A,,,a = 961,W,,az = 3,420). For 32 x 32 matrices, r,, = 423 and Pae = 1,225, so
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Figure 2.4: Ideal Parallelism and Resource Profiles for MatrixMult on 16 x 16 matrices
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the difference in the behavior of the two programs are still fairly small. In many large scientific

applications, we find that ample parallelism is available with traditional iterative formulations.

DEF rip A B i j low high =
if low >= high then (A[ilowJ*B[lowj])
else mid = floor ((low + high) / 2);

in (rip I B i j low mid) + (rip A B i j (mid+l) high);
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Figure 2.5: Ideal Parallelism and Resource Profiles for MatrixMult with Recursive Inner
Product on 16 x 16 Matrices

2.3.2 Relaxation

As a somewhat more interesting example, we consider 2D relaxation using a 9-point stencil, as

might be used to model heat flow in a rectangular region with insulators at the boundaries.

The Id code is shown below and the parallelism and resource profiles are shown in Figure 2.6
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for a 16 x 16 mesh. The 9-point stencil is computed by the first function.' The interior portion

is computed by a doubly nested loop (interior), with single loops (sides and top-bottom)

computing the edges. For this example we have, P,,, = 188, -r, = 195 and r = 12,811, giving

P,, = 65. On the resource side, Am, = 130 and W,., = 299. This example demonstrates

the virtue of a programming methodology that encourages creating new objects, rather than

updating existing ones. If this algorithm were written to operate in-place in a conventional

language, the programmer would have to introduce temporaries to hold the old values of the

points represented by the top and left edges of the stencil. This becomes awkward to write

and obscures the potential parallelism by introducing anti-dependences. Removing these anti-

dependences at compile time in order to uncover the potential parallelism is quite difficult.

The more likely scenario is that the programmer allows the stencil to pick up some old points

and some new points; this changes the mathematics from a Jacobi method to a Gauss-Seidel

method[311. The latter does have better convergence properties, but admits less parallelism. In

Id either can be expressed with equal ease and the differences in the two algorithms are explicit

in the program formulation.

%7 2D Relaxation using Nine-point Backward Difference Operator
%'% with reflective boundary conditions.
defeubst stencil I il i ih jl j jh -

A[i,j] - (( A[il,jl] + 4*A[il,j] + A[il.jh]) +
(4*1[i ,jl] - 201[i ,j] + 4$A[i ,jh]) +
( a[ih,jl) + 4*[ih.j] + I[ihjh])) * 0.05;

defsubst sides R A 11 nl 12 u2 =

{for i <- 11+1 to ul-i do

Ri,12] - stencil A (i+i) i (i+1) (12+1) 12 (12+1); % first col

R[i,u2] = stencil A (i+1) i (i+1) (2-1) n2 (u2-1)1; % last col

defsubst top-bottom R A 11 ul 1? u2 -

{for j <- 12+1 to u2-1 do
R[11,j] = stencil A (11+1) 11 (11+1) (j-1) j (j+i); % first row

R[uI.j] = stencil A (ul-1) ul (ul-1) (j-i) j (j+i)}; % last row

defsubst interior R A 11 ul 12 u2 =

{for i <- 11+1 to ul-i do % interior

{for j <- 12+1 to u2-1 do

R[i,j] = stencil A (i-i) i (i+i) (j-1) j (j+)1};

'The defmubst keyword indicates that it is permisable to expand the function graph "it line". For the
functions containing loops, it merely enables optimization of the call boundary.
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defsubst relax-step I =
{((li.ui),(12,u2)) = (2D-bounds A);

R = I-Matrix ((11,ui),(12,u2));
R[11,12) = stencil A (11+1) 11 (11+1) (12+1) 12 (12+1); % Corners
R[l1,u2] = stencil A (11+1) 11 (11+1) (u2-1) u2 (u2-1);

R[ul,12] = stencil A (ui-1) ul (u-1) (12+1) 12 (12+1);
R[ul,u2] = stencil A (ul-1) ul (ui-1) (u2-1) u2 (2-1);
call sides R A 11 ul 12 u2;

call top-bottom R A 11 ul 12 u2;
call interior R A ii ul 12 u2

in R};
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Figure 2.6: Parallelism and Resource Profiles for Relax-step on a 16 x 16 Mesh

Even though all the loops are essentially FORALL constructs, the recurrence involved in

generating the index values has a significant effect. This can be mediated somewhat by static

unrolling of the inner loops. Observe, however, that the loops handling the boundary conditions

and the nest dealing with the interior completely overlap.
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It is more interesting to examine the behavior of several iterations of relax-step, as repre-

sented by the successive over-relaxation program shown in Id below.

def relax I steps =

{for i <- 1 to steps do
next I = relax-step A;

finally Al;

The parallelism and resource profiles for 16 iterations on a 16 x 16 mesh is shown in Figure 2.7

on the same time-scale as Figure 2.6. Successive iterations overlap, so the critical path only

increases by a factor of 2.4 (ro, = 465). The average parallelism is now 920. This demonstrates

the power of I-structures, which provide element-by-element synchronization to allow concurrent

production and consumption. On the other hand, the local storage requirement has increased

11-fold (A,,a, = 1,718 and W,.., = 3,430) and we now have 16 versions of the mesh extant

concurrently.

The leveling of the I-structure profile in this example is somewhat misleading and deserves

explanation. What we see from this profile is that the structures are all allocated early in the

execution of the program. The profile levels at this point, because our ideal model does not

assume automatic storage reclamation to deallocate inaccessible structures. When structures

are deallocated as soon as they are no longer needed, the I-structure profile falls as shown in

Figure 2.8.2 Observe that the peak resource requirement is unchanged.

If aie limit the number of concurrent iterations of the outermost loop to some k, at most

k + 1 versions of the mesh will be in use at any time. Rather than allocate and reclaim these

structures, it will be possible simply to circulate them within the graph. This provides a means

of obtaining a clean problem formulation, which creates new structures, rather than updating

old ones, while preserving the ability to reason about the space-complexity of a program.

If we embellish our relaxation example to include testing for convergence using the maximum

absolute difference over the mesh, the behavior of the program changes dramatically, as shown in

Figure 2.9. The opportunity for overlapping successive iterations is lost, because the predicate

depends on the value at every point in the mesh of the previous iteration. To gain more

parallelism it would be necessary to perform several relaxation steps between convergence tests.

Note, however, that the convergence test and the relaxation step do overlap. The natural limit

2This profile was generated by inserting a annotation into the program text declaring the lifetime of the
structure and bringing the first iteration out of the loop.
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on the unfolding of the outer loop is similar to the effect that k-bounding has in general and

likewise dictates the number of concurrent versions of the mesh that can be utilized.
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Figure 2.9: Parallelism and Resource Profiles for 4 Iterations of Relax on a 16 x 16 Mesh
with a Convergence Test

2.3.3 LUP decomposition

More complex behavior is exhibited by LU decomposition with partial pivoting, due to condi-

tionals, dynamically changing iteration counts, and overlapping phases of pivot selection and

row elimination. The Id version of this program appears in the literature[ll and is not shown

here. It was put forward as an example where write-once storage is inefficient at first glance,

but proves to be much less so with a little programming care. The parallelism and resource

profiles for a 20 x 20 problem is shown in Figure 2.10; this uses the quasi-random numbers of the
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Linpack benchmark[39] as the element values. Parallelism decreases as the size of the submatrix

diminishes, but the linear search for the pivot row is largely masked by the last portion of the

previous row elimination. Although token frame requirements follow the general envelope of

the parallelism profile, this computation is much more resource intensive than those discussed

above, with nearly 20 tokens per enabled operation.
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Figure 2.10: Parallelism and Resource Profiles for 20 x 20 LUP Decomposition

It is possible to write this program in a more declarative style where L, U, and P are defined

in terms of one another by their mathematical relation, A = LUP. The interesting point here is

that since the definitions are mutually recursive, the loops can only make progress by executing

together. The resulting program has no valid top-to-bottom left-to-right sequential ordering.

This situation arises due to non-strictness and has been studied extensively by Traub[86]. It

presents serious problems when generating code for sequential machines. For our purposes, the
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important fact is that, in general, we can not force one loop to execute before another.

2.3.4 Simple

As a nearly full-scale application, we examine a hydrodynamics and heat conduction simu-

lation, known as the Simple code[25], that has been used as an application benchmark for

high-performance computers. The problem is to simulate the behavior of fluid in a sphere,

using a Lagrangian formulation. To simplify the problem, only a semi-circular cross-sectional

area is considered. The program does not vectorize easily, due to extensive table lookups within

key inner loops. The particular version we use was developed to demonstrate the possibility of

programming scientific applications at a very abstract level, using higher-order functions and

I-structures[11]. A declarative style is adopted in which node or zone formulae are applied to

generalized co-ordinate functions over finite ranges. The resulting program directly reflects the

equations describing the physics of the problem. This is quite far from the versions of this

program studied elsewhere[65, 78], which employ a very low-level programming style.

Figure 2.11 shows the parallelism and resource profiles of Simple, for four iterations on a

16 x 16 mesh. We have -r, = 2,969 and rl = 3,925,012, giving P.e = 1,322. The parallelism

exposed here is substantial, especially considering the small problem size. Buried in this profile

are some 13 distinct phases of computation, including forward and back solvers along one

dimension of the mesh and then the other. The peak parallelism is 11,912, but it is clear from

the profile that the amount of parallel activity varies dramatically over time.

The resource profiles, however, are cause for alarm; the resource requirement is not propor-

tional to the exposed parallelism, as in the previous examples. It explodes when the program

begins and then tapers down as the program progresses. The problem here is that the outer

loop unfolds completely, allocating a version of the m .:h, which includes 25 zone and nodal

quantities over an n x n range, for every time-step, and spawning off the computation com-

prising each step. Because functions and data structures are non-strict, the computation for

each step unfolds almost completely, even though that for the later steps has no data to oper-

ate on. This generates a peak resource requirement of A,,, = 53,777 and Wmaz = 260,554!

I-fetches are issued against the preceding version of the mesh, and then the computation effec-

tively suspends until data becomes available. As data moves through the sequence of meshes,

the computation for the various steps completes, finally releasing resources. This causes the
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stair-step appearance of the resource profiles. There is, in fact, a scalar value produced toward

the end of a time-step, upon which much of the computation in the next iteration depends.

However, neither the predicate nor the allocation of resources depend on this value, so the loops

unfold in this rather alarming manner. We call the unfolding in this case useless parallelism.

This situation would be disastrous in a large scientific application, because the mesh is

likely to be very large and many versions of it are generated. A typical problem size for Simple

would be 100,000 iterations on a 100 x 100 mesh. Even if I-structures were reclaimed the

instant they became inaccessible, we would see the same peak I-structure storage requirement,

because references to all the versions of the structure do co-exist, as we observed in the succesive

relaxation example. As bad the I-structure profile appears, notice how it is exceeded by token

storage requirement; both are unacceptable.

2.4 A Finite-Parallelism Execution Model

We have seen that the dynamic dataflow approach exposes tremendous parallelism, because

parallelism is exposed at all levels. We have also seen that the resource requirement of such

programs is at least proportional to the exposed parallelism, and in some applications it is much

worse. In this section, we argue that the situation does not improve when only a fraction of the

potential parallelism is exploited. Thus, we claim that the problem is not simply an artifact of

our unrealistic model, but a serious pragmatic concern.

Our "finite-processor" model is spedified by the following:

1. All operators take unit time. Tokens produced by an operation appear on the output arc

one time unit after the node fires.

2. Communication is subject to some fized latency L. Tokens produced by an operation at

time t are available at the successor nodes at time t + L.

3. An operator ezecutes only when all ifs input data are available, but no more than a fized

number P ezecute in a single step. When more than P operations are enabled, FIFO

scheduling is assumed.

4. The value produced by an I-structure fetch (I-fetch) operation is available 2L time units

after the request is produced by the later of the I-fetch and the I-store for the particular
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element accessed.

This models P processors only in a very loose sense. It stipulates that the maximum

parallelism that can be exploited is P, and that every value produced is subject to a latency

penalty, as if all communication were external. In making the model more realistic, we have

also made it less precise. Since P operations are chosen from the set of enabled operations, a

large class of execution schedules are allowed for a given program on a given input. The one

carried out by our graph interpreter is determined by the FIFO rule and an arbitrary ordering

of output arcs for each node, as produced by the compiler.

Figure 2.12 shows the parallelism and resource profiles for Matrix Multiply (16 x 16) under

this finite-processor model, where only a small amount of parallelism can be exploited (P =

10, L = 2). The critical path has increased by a factor of nearly 30 over ideal execution

(7,, = 7,737), but the peak resource load is undiminished (W,,a = 2,406 and Amaz = 922). In

fact, the average resource load has essentially doubled, from 826 to 1,583 for tokens and from

347 to 648 for frames.

We observe this phenomenon in most programs. This should not be surprising since execu-

tion under the finite-processor model essentially follows the schedule of the ideal model, except

computational resources are multiplexed across the collection of enabled activities. Although

we do not pursue the point here, the resource behavior does not change considerably when

the model is made more realistic by actually mapping enabled operations onto a fixed set of

processors. We call this situation ezcessive parallelism, because the program unfolds in way

that exposes parallelism far beyond what the machine can exploit. To reduce the resource

requirements significantly, it is necessary to exert considerable control over how the program

unfolds.

2.5 Conclusions

We have shown through several examples that the dataflow graphs generated from Id pro-

grams allow parallelism to be exploited at all levels, i.e., in nested loops, among collections

of user-defined functions, within conditionals, and even in producer-consumer relationships.

Furthermore, when executed in a dynamic dataflow paradigm, often a tremendous amount of

parallelism can be exploited. However, in doing so, the resource requirements can be exorbitant.
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In some cases, we have seen that programs unfold in a way that causes resources to be allocated

very early without contributing to reducing the critical path. In other cases, we see that pro-

grams with a reasonable ratio of resource usage to parallel activity become unreasonable when

only a small fraction of the potential parallelism is exploited. In the next chapter we will see

that limiting the unfolding of loops can be very effective in addressing the resource problem.
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Chapter 3

k-Bounded Loops

In this chapter we present a simple mechanism for controlling the unfolding of loops in a

dataflow machine. The idea is to introduce an artificial dependence between the completion of

an iteration and the initiation of the one logically k later. As this allows the resources associated

with the iteration to be reused, it is valid to view it as an anti-dependence in the traditional

sense[64]. The basic k-bounded loop schema is described here, but details and trade-offs in

graph generation are left for Appendix A. We suggest, by example, that k-bounded loops are

an effective means of controlling parallelism to reduce resource requirements. This sets the stage

for the bulk of the thesis, developing a systematic policy for assigning loop bounds. However,

before addressing the policy issue, we demonstrate further virtues of the approach in reusing

data structure storage, contexts, and entire rings of activation frames.

3.1 Basic Loop Bounding Mechanism

The starting point for our k-bounded loop schema is based on the loop schema employed under

the U-interpreter[14], shown in Figure 3.1. A loop has a collection of loop variables defined in

each iteration in terms of the values from the previous iteration; these correspond to the arcs

leaving the body and feeding back into the bank of L-switches. All the tokens for a particular

iteration are distinguished by a portion of the tag. We say a loop iteration is initiated when

the first token for the iteration is produced, i.e., enters the body of the loop at the output of

an L-switch, and completes when the last token for the iteration is consumed. Between these

two events the iteration is active. Thus, the bank of L-switches defines the boundary between

one iteration and the next.
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A loop has bounded unfolding if, for any input values, at most a fixed number of iterations

are active concurrently under all legal execution schedules. Note, this does not assume the ideal

model or any other particular scheduling discipline; it is a statement about the graph itself. It

has been shown[26] that a loop has bounded unfolding if all the loop variables are all mutually

dependent and for each node in the graph there is some loop variable that depends upon the

node, i.e., the graph for the loop forms a single strongly connected component[3].

For example, the IP loop depicted in Figure 2.3 does not have bounded unfolding. To see

this, suppose the * operation (node 11) does not fire for a suitably long period. This does not

inhibit the loop variable k from circulating through the loop, as k does not depend on sum.

For any value of s, eventually s iterations become active. It is enough that there exists a legal

schedule that demonstrates the unbounded behavior, but here such a situation may easily arise

in practice. Suppose matrix I is filled and matrix B is empty, as might occur if the producer

has not progressed far enough to start filling it. Then, I-fetches against B will be deferred

and tokens will pile up on the left input to the * node. In general, for each active iteration

there will exist some number of extant tokens, although these may be represented by entries on

deferred-read lists or tokens within subordinate invocations.

If a loop does not have bounded unfolding, we can cause it to have bounded unfolding

by introducing artificial dependencies. Basically, we must make the initiation of an iteration

depend upon the completion of the iteration logically k earlier. By definition, the loop body

and predicate are well-behaved, thus when a token is produced on each output, no tokens

remain in the blocks themselves. Therefore, once all the L-switches have fired for iteration i

and produced the wave of tokens marked i + 1, no tokens remain for iteration i. It is complete.

To detect this event, we can add an output arc to each L-switch and reduce them to a single

arc through a tree of no-ops, as indicated by the triangular completion tree in Figure 3.2. To

prevent iteration i from starting, we need only inhibit the L-switches from firing with inputs

marked i - 1. This can be done by gating all the loop variables, but it is enough to gate the

output of the predicate, since it controls all the L-switches. Thus, we introduce a new L-gate

node, denoted by M, that receives the output of the predicate and forwards it to the L-switches,

but only when a matching token is present on the iteration control arc. We require that iteration

i complete before iteration i + k starts, so the completion tree and the gate are connected via

a Dk_2 node, which increments the iteration number of its input by k - 2.
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To get the loop started, k - I trigger tokens are deposited on the iteration control arc

carrying iteration numbers 0,..., k - 2. In Appendix A, we show that this does, in fact, allow k

waves of tokens to exist in the loop body concurrently, and explain how the trigger tokens are

deposited and removed. Notice that this approach requires k > 2; this phenomenon is not unlike

the need for two gates in a shipping lock or two stages in a flip-flop; the appendix also describes

a more costly 1-bounded loop schema. Completion detection presents an interesting trade-off:

by making use of the dependencies within the loop body itself, the size of the completion tree

can be reduced, however, this reduces the level of potential parallelism within the loop body

for a given k.

The k-bounded loop schema is well-behaved and, therefore, may appear within another

loop. We may have ko concurrent iterations of the outer loop, which generates k, concurrent

invocations of the inner loop, each with some, possibly different, ki concurrent iterations.

With this approach, the unfolding of a loop is determined dynamically at the time it is

invoked. The prologue of the loop establishes k and generates the trigger tokens. Thus, a

program can run with tight bounds on a small machine and looser bounds on a larger one,

without recompilation. The task then becomes one of determining the proper k-bounds, given

the machine configuration and the problem size.

3.2 Effectiveness of Bounded Loops

To see the effectiveness of this mechanism, we explore a couple of examples from the previous

chapter. Consider first the resource behavior observed in Simple (Figure 2.11). Suppose that

only two iterations of the outermost loop were allowed to execute concurrently, i.e., the first

must complete before the third can start, and so on. This prevents the run-away resource

allocation observed previously, as can be seen in Figure 3.31. There is no increase in the critical

path, so whatever additional overlap occurred between outer loop iterations was, in fact, useless.

The peak parallelism has dropped, since the burst of activity resulting from the rapid unfolding

of all the iterations is prevented. The average parallelism is unchanged, however. The local

'Actually, all the examples shown in the thesis use the k-bounded loop schema, with unbounded execution
simulated by setting the bound to the total number of iterations. The loops in InversePolynomial and Region
are bounded at 2 in both the Simple executions, since these are "while" loops that do not unfold beyond this
amount. If a larger value were used, the activation frame usage would increase considerably, with an increase
in r.. In the Matrix Multiply example, the unfolding of the inner product loop is uniformly bounded at 3, for
reasons discussed later.
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storage requirement is reduced (Wma, = 142,958, Am,, = 29,999), but more importantly,

it has become independent of the number of time-steps. This is a qualitative improvement,

although the token storage requirement is still quite large.
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Figure 3.3: Parallelism and Resource Profiles for Simple, 16 x 16 for 4 steps, with the
Outermost Loop Bounded at 2

Now consider the excessive parallelism demonstrated by the finite-processor Matrix Multiply

experiment in Figure 2.12. Suppose that only four iterations of the outermost loop are allowed

to execute in parallel, and for each active outer-loop iteration only four iterations of the middle

loop are active. Thus, at any time at most 16 invocations of IP are active concurrently. With

these k-bounds, the finite-processor profiles are as shown in Figure 3.4. The critical-path

length, roo, has increased by less than 2%, while Wma= has dropped from 2,406 to 186. Ameaz

has dropped from 922 to 67.
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3.3 Reusing Resources

The k-bounded loop paradigm promotes a subtle shift in the way one thinks about tagged-token

dataflow architectures. Coming from the U-interpreter viewpoint, every instruction executed

in the entire lifetime of a program has a unique tag. Generation of tags, i.e., allocation of

tag-space, is kept simple and decentralized by using the tag-space sparsely. However, tags

grow arbitrarily large. Under the bounded loop paradigm the tag-space can be used densely.

Thus, tags become addresses and iterations become resources. This section explores the idea

of recycling resources within the dataflow graph, in the context of k-bounded loops.

3.3.1 Recycling iterations

Since a loop can have at most k concurrent iterations and these are consecutive, i.e., they are

marked i,...,i + k - 1, all tag manipulation operations can be performed modulo k. Still,

all concurrent iterations will be distinguished by their iteration numbers. Thus, for a given

machine, we can fix a maximum k value and thereby fix the size of the iteration field in the

tag. In a manner similar to detecting completion of an iteration, completion of an invocation

can be detected and its resources released[26, 85]. Thus, the context portion of the tag can be

kept reasonably small, as well. The impact of these developments is that the tag-space is no

longer used sparsely. This makes it possible to treat a tag as an address. The logical next step is

simply to allocate a region of storage to each acyclic code-block invocation and to each iteration.

Papadopoulos demonstrates an elegant development of this concept in his Explicit Token Store

(ETS) dataflow architecture[74], which is being realized in the MIT Monsoon dataflow machine.

In an ETS framework, a k-bounded loop schema has a simple realization. Instead of gen-

erating a set of k trigger tokens, the loop set-up allocates k activation frames and forms them

into a ring, as suggested by Figure 3.5. When an iteration completes, it sends a token to its

predecessor, thereby giving the predecessor permission to send a new wave of tokens forward.

The loop prologue simply builds this ring and the epilogue deallocates it. Each frame can also

hold copies of loop constants and other :zsources, as discussed below.
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3.3.2 Recycling data structures

A natural extension to k-bounded loops is to recycle data structures as well. Linear recurrences

over large regular data structures of fixed size and shape are common in scientific applications.

The relax program of Figure 2.7 is a prime example of such a first order recurrence; each

iteration produces a new mesh using the mesh produced in the previous iteration. By bounding

the outer loop to k, at most k + 1 meshes can be in use at any time; thus, the meshes can simply

be circulated within the graph. Issues related to detecting the occurrence of such a situation

and clearing the meshes between uses are discussed in Appendix A.

Figure 3.6 shows ideal profiles for relax with the outermost loop constrained to 4 concur-

rent iterations, 5 versions of the mesh recycled within the graph, and innermost loops tightly

constrained. This shows a qualitative difference in all of the resource profiles, but especially in

the I-structure profile. We might use this k-bound assignment for a configuration capable of 25

parallel operations with a latency of 4.

Circulating data structures in this manner can be viewed as a generalization of the multi-

buffering techniques used to support asynchronous I/O, but here it is used as part of the

internals of the program. For an nth order structure recurrence, we circulate k + n structures in

a k-bounded loop, where after the n t h use of a structure it is cleared and reused. It is possible

also to allow the number of versions of the structure to be controlled independent of k, using

the recycling strategy explained in Appendix A.

3.3.3 Recycling contexts

Above we noted that a k-bounded loop can appear within another k-bounded loop. Not only

does this provide a great deal of freedom in the policy for controlling parallelism, it provides

an opportunity for more extensive resource reuse. Suppose each invocation of the inner loop

builds a ring of ki activation frames. Each of these rings can be treated as a constant in one of

the ko activation frames associated with the outer loop. In this way, a ring of rings is formed.

This storage is used heavily for the duration of the outer loop and then released in bulk. We

will see that this reduces the execution overhead of the loop bounding mechanism, but also

implies that a machine might exploit the locality inherent in the use of such a structure.

In addition, a deeply nested loop will usually have loop constants from several of the outer

levels. By associating rings of frames with the outer loop, it is possible to avoid storing constants
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inherited from outer level loops multiple times. For example, our matrix multiply program has

seven loop constants in the innermost loop, five of which are constant over the middle loop, as

well. If the activation frame rings of the inner loop were tied to the ring for the middle loop,

the five constants acquired from the outer loop need only be stored once. Each time the IP loop

is activated, only the two remaining loop constants need be provided. This, in effect, combines

the virtues of a multilevel environment with the access efficiency of a fiat environment.

3.4 Conclusions

k-Bounded loops can be treated as a simple extension of the loop schema originally proposed

for the U-interpreter and implemented quite efficiently. Signal generation is required if contexts

are to be reclaimed without some external reclamation mechanism. Beyond the cost of signal

generation, the number of instructions introduced to control tiLe unfolding of a loop is equal

to the number of loop variables, using the most straightforward style of completion detection.

With a little graph analysis this can be reduced, but doing so can reduce the utilization of

the resources assigned to a loop. The cost of constructing a 1-bounded loop in a pure dataflow

context is considerably greater, although this can presumably be reduced in hybrid architectures

with a more powerful mechanism for serialization[55].

The basic mechanism proves to be very effective in controlling parallelism to reduce resource

requirements. This brings us to the problem addressed in the bulk of the thesis, development

of a policy for assigning the k-bounds.
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Chapter 4

Toward a Policy for Loop Bounding

In the preceding chapters we have seen a technique for characterizing the behavior of programs,

which provided a means of demonstrating the parallelism/resource problem, and an effective

mechanism for controlling parallelism. k-bounded loops provide "parallelism knobs" that can

be adjusted dynamically. We turn now to the question of how to adjust the knobs. This is most

naturally viewed as an optimization problem: given a resource constraint r, choose a setting

of the k-bounds such that the resource usage under any execution schedule is no more than r

and performance is maximized. Casting the problem in this light provides valuable insight, but

has several problems. The resource usage function is complex, the space to optimize over is

ill-defined, and the objective function is difficult to characterize. Even if these problems were

overcome, since our target is a complex, asynchronous environment the effort placed in deriving

an optimal static execution schedule is likely to be squandered. This suggests that we should

relax the optimality concern and take a more qualitative approach: identify those loops that

are clearly good candidates for exposing parallelism and those that are clearly poor candidates.

Our task then becomes one of developing policies for dealing with the various loop relationships

that arise and deciding where to invest resources. In this chapter, we assemble the tools we will

need for formulating and testing policies in later chapters.

This qualitative approach leads to an unusual interplay of static analysis and dynamic de-

cision making, so let us examine this interplay further. First, unlike the more traditional work

on optimization and scheduling[76], we are concerned with programs in-the-large. As the pro-

gram structures we deal with become larger, more crude analysis must suffice. However, as we

work down into the computational kernels of the program, we need to be able to exploit more

complete information. Thus, for a given program we must represent and utilize static informa-
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tion at various levels of detail. Second, we cannot assume the program is to be recompiled for

each problem size and machine configuration, so in most cases static analysis can only yield

symbolic expressions for the size of various data structures and for the resource requirements

of various portions of the program. For complex WHILE loops we cannot even derive a simple

expression for the iteration count at compile time. On the other hand, if the program is stated

in terms of simple loops over regular data structures of fixed size, we want to exploit this fact.

Thus, the level of detailed revealed through static analysis will vary for different programs. In

our approach, decision making is integrated with program execution and can be very dynamic.

However, we try to minimize the decision making overhead by making decisions at the highest

possible level. Thus, if the program is stated in terms of a fixed size data structure, we may

exploit this fact by "lifting" decision making out to the beginning of the program. As the

character of the progran becomes more dynamic, decisions are made on a more local basis.

The general rule is to make decisions at the outermost level in which the necessary parameters

are known.

The very fact that decisions are made dynamically implies that they must be made quickly.

We cannot afford to search a space or solve a constraint system. Therefore, at compile time we

determine the parameters that enter into each decision and their inter-relationship. Based on

this, we augment the program with code that computes loop bounds using simple formulae. A

given formula embodies a policy for assigning k-bounds in the particular portion of the program,

e.g., it favors outer loop unfolding, inner loop unfolding, or some combination.

To make clear how a program is augmented with code that computes a k-bound in terms

of symbolic program and resource parameters, we begin by analyzing a single loop in isolation.

Then, to highlight the policy aspect of our task, i.e., determining where resources should be

invested, we examine the behavior of a simple nest of loops. From this examination emerges

several important ideas. The first is the use of symbolic resource ezpressions to characterize the

space of valid k-bound assignments for a collection of loops. A policy can then be formalized as

a rule for solving a equation of the form: R(kj, ... , kn) = r, for each ki "on the fly". We need

not derive an accurate closed-form expression for the resource requirements of the program as

a whole, however, for pieces of the program where such an estimate can be derived, we can

make decisions most effectively. The second is a notion of optimality against which policies can

be evaluated on simple program examples. The third is a simple model of loop unfolding that
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gives a qualitative basis for policy formulation. Finally, we outline our framework for analysis

and policy development, which provides the basic organization for the remaining chapters.

4.1 Determining k for a Single Loop

In this section we examine the simplest loop bounding scenario, a single loop. Although the

policy issue is trivial here, it makes clear what information is extracted through static analysis

and how it is used to augment a program with resource management code that computes k-

bounds. Recall the 2D relaxation program in Section 2.3. In each iteration of the outermost

loop, a matrix of size (11, ul) x (12, u2) is allocated and filled. The matrices can be recycled, as

discussed in Section 3.3.2, so with k concurrent iterations of the outermost loop, k + 1 versions

of the matrix may be in use. Each iteration reads one matrix and writes the next. Thus, if this

program is to execute under data structure storage constraint S, we should set the bound for

the outermost loop as:

k = [(u1 - 11 + 1)(u2 -12+1)]1

Observe, we do not "compile in" the loop bound, k, the machine configuration, S, or even

the size of the matrix. Rather, we capture the relationship between them. The program is

augmented with resource management code that computes k in terms of dynamic resource

parameters and program values according to the above formula. An augmented version of the

relax program from Chapter 2 is shown below, with resource management code underlined.

def relax' A steps S -
{((l1,u1),(12.u2)) - (2Dbounds 1);

k = max steps (floor (S/((ul - 11 + 1)*(u2 - 12 + 1)) - 1);

in {for i <- 1 to steps bound k do

next A - relax-step 1;
finally 1});

By controlling the unfolding of the loop "-i this manner, we ensure that the combined size

of the structures in use at any time is at most S. Forming the expression for the structure

size and introducing the code to compute the k-bound is straightforward. The more difficult

analysis is determining that the lifetime of the structure is contained within a fixed window of

iterations. In this example, the lifetime of the structure created by iteration i is contained in

the lifetimes of iteration i and i + 1, tudess i is the last iteration.1 This augmented loop could

'Augmenting the program in this manner is effective even if storage is reclaimed automatically through some
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be used in a larger program without further analysis of its behavior, because it is self-mc naging:

given only a parametric resource constraint, S, it determines its own unfolding. On the other

hand, by considering the context in which this loop is invoked, we may be able to make a

more educated k-bound assignment. Perhaps a small reduction in unfolding here will enable

a significant amount of parallel activity elsewhere, or perhaps we may be able to optimize the

resource management code if the context is known.

Although the k-bound assignment is dynamic, it does not take into account status informa-

tion such as the level of activity in the machine at the time the loop is initiated. In general,

given a loop and a parametric resource constraint, we analyze the program to determine a

reasonably tight upper bound on the resource usage per iteration, and then we augment the

program with code to determine the k-bound. If the number of iterations for a loop can be

determined at the point where the loop is initiated, as in a FOR loop, then this can be used

as an upper limit on k. Resource concerns may place further constraints on k. Observe that

the k-bounded loop schema requires that a loop bound be established at the time a loop is

initiated. Thus, for a loop where the number of iterations cannot be determined in advance,

we either have to choose a k that is expected not to exceed the total number of iterations or

compile the loop using a different schema. 2

For a single loop there is no policy issue per se. We simply divide through to solve for

k. However, in dealing with complex collections of loops, we must decide where to invest our

resources, based on some policy.

4.2 Determining k-Bounds for a Loop Nest

To develop intuition toward the broader k-bounding problem, we consider an example with

nested loops. We will look at local storage requirements, which are sensitive to the unfolding

of any loop in a nest. The matrix multiply program of Section 2.3 has three nested loops, as

mechanism external to the program, since references exist to only k+1 structures at any time. However, the actual
reclamation of structures may lag somewhat behind the completion of the corresponding iterations. Recycling
structures within the loop, as discussed in Chapter 3, avoids the cost of repeated allocation and deallocation
and, more importantly, guarantees that structure reuse is closely linked to completion of iterations. However,
recycling structures may require transforming the program, e.g., lifting the allocation of a structure up to the
loop that determines its lifetime, whereas computing k-bounds only requires augmenting the program with r w
resource management code.

2By compiling loops essentially as tail-recursive functions it is possible to circumvent the k-bounding mecha-
nism, however, execution costs increase and control over unfolding is lost.
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indicated in Figure 4.1. Here the question is not just how to compute a particular loop bound,

but where to invest resources. In Figure 2.3, we observed that for a given invocation of the

innermost loop (the inner product), only a small number of iterations are active at any time.

Clearly, it does not pay to invest resources there, so let us set the k-bound for this loop to a

small constant, ki = 3. This way we can essentially ignore the innermost loop and focus on

whether we do better by investing resources in the outer loop or in the middle one.

FOR iI

FOR

FOR k Product

Figure 4.1: Loop Structure for Matrix Multiply

Although the mechanism allows a different k-bound to be employed for each invocation

of the middle loop, there is little reason for doing so. Thus, the space of possible k-bound

configurations we should consider is the cross product of the range for the outer loop unfolding

parameter, ko, and that for the middle loop, k,. To determine where to invest resources, we

need to understand what the terrain in this space is like.
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Figure 4.2: W a.,= Over Entire k-Space for 16 x 16 Matrix Multiply in Units of 1,000 Tokens

One way to build this understanding is to enumerate the entire space and examine the
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resulting surface. This is clearly unrealistic for large programs, but is applicable to simple

programs over a reasonable range of k-bounds. Figure 4.2 gives the maximum local storage

requirement Wma,,(in units of 1,000 Waiting Tokens), obtained by executing the program under

the ideal model for every point in the entire k-space for Matrix Multiply on 16 ': 16 matrices,

with the unfolding of the innermost loop fixed at three. The first observation is that the resource

requirement increases monotonically with the k-bounds. The second is that the surface is not

svimetric: the waiting token requirement increases more rapidly with respect to outer loop

unfolding than with respect to middle loop unfolding. Since the bulk of the work is performed

within the inner product, we may consider various k-bound configurations that allow the same

number of concurrent invocations of the inner product. In k-configuration (ko,k) = (16,2)

the requirement is 380 tokens, while at (2,16) it is only 310. Intermediate configurations which

also allow 32 concurrent invocations of the inner product exhibit requirements between these

values, 340 at (8, 4) and 320 at (4,8).

Figure 4.3 gives the average parallelism, P,,,, measured under the ideal execution model

over this same region. Like token storage requirements, P, increases monotonically with the

k-bounds, although the surface is not as smooth as that for 7;z. Observe the dramatic

increase in Pe from k, = 15 to ko = 16, whereas Figure 4.2 shows no corresponding jump.

The P,,, surface also is not symmetric; it increases more rapidly with unfolding in the outer

loop. The same configurations mentioned above exhibit Pa,, of 84, 83, 74, and 52, respectively,

by increasing k,. This is encouraging, for if parallelism is proportional to resources everywhere,

locating a good k-bou 4 configuration is fairly simple. However, we should lo4,k at the situation

here in more detail.

For a given resource constraint there corresponds a feasible region of k-configurations t.hat

allow the program to execute without requiring more than the specified amount of resources.

Figure 4.4 indicates the feasible region for our example with a limit of 350 tokens. We can

ask which feasible configuration yields the best execution time, or maximum P,,. To see this,

we can examine the measured Pve over the same region, as depicted in Figure 4.5. For this

particular resource limit we see that the optimal k-bound configuration has the outer loop

bound set to 8 and the middle loop bound set to 4. The sequence of configurations defined in

this way for increasing resource constraints define a curve of optimal configurations, a k-curve,

whirh wp would like to capture in a simple policy.
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Given complete information regarding the resource requirements and potential parallelism

at all possible k-bound configurations, we could search for the optimal configuration under any

resource constraint. Of course, obtaining this information in the manner presented here would

be out of the question in practice. Running the program even once to deduce its properties is

somewhat unsatisfactory, although several researchers advocate just that[41, 81], but running

it for many possible configurations is absurd. In the case study presented later we consider

a program containing roughly 300 loops, nested six levels deep. The space of possibilities is

inunense! Even for simple programs, the size and shape of the space may be highly data

dependent. More importantly, optimality under particular scheduling assumptions is at best a

guideline. The resource requirements exhibited under a particular execution schedule, e.g., the

ideal model, are not necessarily the worst case, so the configuration chosen in this way may

deadlock under different scheduling assumptions. Finally, the parallelism exhibited on a real

machine will be influenced by a variety of other factors.
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Figure 4.5: Pe for 350-Token Feasible Region for 16 x 16 Matrix Multiply

The real point of the discussion is that it establishes a modus operandi for attacking the

problem of developing policies for loop bounding. We can view the ideal model as represent-

ing the "expected case," in the sense that a k-bound assignment that achieves near optimal

performance under that model is likely to be a reasonably good assignment for a realistic ma-

chine. Thus, this rather computationally intensive optimization framework provides a metric

66



for evaluating various policies on particular small examples. We can ask, for a given resource

constraint, what fraction of the maximum achievable parallelism does a given policy achieve.

This allows us to make stronger assertions than would be possible by only comparing policies

with one another.

Furthermore, it is clear that we cannot back away from the feasibility issue. If we are to

assign k-bounds in a manner that ensures the program will stay within some resource constraint,

we must characterize the feasible region in some manner. We must be able to estimate the

resource requirements for a given k-bound configuration or possibly even give a closed-form

expression for the requirement, in terms of the k-bounds and certain program variables. This

issue is addressed in detail in the next section. Figure 4.2 provides grounds for optimism in this

effort, because in scanning over it we see that the change in the resource requirement is fairly

smooth.

Given the means of estimating resources to ensure feasibility, we still need to choose a near-

optimal k-bound configuration rapidly. Although deriving a meaningful closed-form estimate of

parallelism appears to be very difficult, there is still cause for optimism. Following the method of

evaluation suggested above, let us define a k-bound configuration as good if it exhibits maximal

Pav, under the ideal execution model for some resource limit. The configurations marked

by boxes in Figure 4.6 are good in this sense. Thus, most points in the lower left quarter

are good, and beyond that the outer loop should be allowed to unfold completely. If this

characterization could be established at compile time, it would not be difficult to arrive at

a formula for computing the k-bounds, i.e., a policy for choosing a configuration, that stays

within these good regions. A simple analytic model of loop unfolding is presented later in this

chapter as a basis for such a characterization.

4.3 Estimating Resource Requirements

In this section we focus on the problem of estimating the resource requirements. The idea is

to form a simple symbolic expression for the maximum resource requirement of a program or

subprogram in terms of k-bounds for the constituent loops[6]. Such an expression provides a

conservative characterization of the feasible region for any given resource constraint. We 'begin

with the requirements for individual code-block invocations and iterations and then extend this
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Figure 4.6: "Good" Points in k-Space for 16 x 16 Matrix Multiply, shown overlaying P.,e

analysis in terms of the two rules of composition for loop programs: nesting and adjacency.

Two forms of local storage are considered, tokens and activation frames, as well as I-structure

storage. In the process of developing these resource expressions certain key policy parameters

emerge.

4.3.1 Individual code-blocks and loops

We begin by examining the token storage requirements of individual acyclic graphs and indi-

vidual loops. A very crude estimate for the token storage requirement of an acyclic graph is the

number of arcs, since each token coiresponds to some arc. If we are only concerned with waiting

tokens, we could count the number of nodes with two inputs. In either case, the result is likely

to be unsatisfactory because no execution schedule obtains the estimate. We have ignored the

dependencies implied by the graph itself. On the other hand, we could compute some kind

of "typical" token requirement by dividing the number of nodes by the critical path, but this

is unsatisfactory because many legal execution schedules may exceed the requirement, raising

the possibility of deadlock. The number we would like to determine is the maximum resource

requirement over any legal execution schedule.

This worst case resource requirement can be expressed as the maximum cut through the

graph. Although max-cut is NP-complete in general[42], for the restricted class of graphs
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we consider it can be reduced to the dual of a min-cost flow problem, and thereby solved in

polynomial time[73]. This approach is pursued in Appendix B, where we form a linear program

representing the token storage requirement of a code-block invocation[26]. In applying this

technique to real Id applications we find that the linear programs are quite large, however,

some straightforward optimizations make the approach practical. The estimates obtained in

this fashion may be somewhat loose for any particular machine, but are achieved by some,

perhaps unlikely, execution schedule.

In the presence of conditionals we either must settle for a somewhat pessimistic estimate,

i.e., one that may not be achieved by any execution schedule, or consider all possible settings of

the conditionals, using a branch-and-bound technique to limit the search. I-structure references

may also cause the estimate to be pessimistic, since the I-store and I-fetch for a given element

represent a data dependence that is not apparent in the graph, except possibly via subscript

analysis[88].

The requirement for a k-bounded loop can be estimated as k times the requirement of the

graph obtained by breaking the cycles in the loop at the L-switches. However, this gives an

overly pessimistic estimate, since some values must circulate in order for the predicate to be

evaluated and the loop to unfold. The constraint system technique in Appendix B takes this

into account and produces a tight estimate of the form t1 + kt 2 . For example, the graph for

the IP loop, shown in Figure 2.3 has 13 nodes and 19 arcs, including the Dk_2 node introduced

to implement the k-bound between the two L-switches and the L-gate. If we break the cycle,

the max cut contains 7 arcs. The constraint system technique gives an estimate of 1 + 4k,

substantially better than 7k. The ideal profiles in Figure 2.3 show a maximum of 6 tokens,

with at most two concurrent iterations. This does not include tokens on the iteration control

arc. Thus, for this example the constraint-system estimate is quite good.

As mentioned above, even if a resource estimate is achievable under some execution schedule,

it may be overly pessimistic for any realistic machine. For example, in Chapter 3 we observed

that all but a very special class of loops have potentially unlimited unfolding. Even our Inner

Product example may unfold to any number of concurrent iterations under a manifestly unfair

execution schedule, yet we saw in Figure 2.3 that under the ideal execution model only two

iterations were active at any time. We will see below that many loops have such a natural

unfolding limit, with certain assumptions regarding fairness and communication latency. As
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long as our loop bounding policy does not assign k-bounds far in excess of the natural unfolding,

resource estimates of the above form can be reasonably accurate, since all k of the iterations

should be active concurrently. Of course, it is unlikely that all active iterations will be in

the worst case token storage configuration simultaneously, as assumed in the estimate, so the

estimate is still conservative.

In considering the number of activation frames, the situation is simpler: each potentially

active loop iteration is allocated an activation frame of fixed size. In effect, the variation in the

token configuration over time is addressed by the compiler in the assignment of frame slots.

The size of the frame reflects the worst case load. We will generally simplify things further

and assume frames are of uniform size, so we only need to account for the number of frames.

Because a frame is allocated for an invocation before the argument values are even available to

be sent to the invocation, frame requirements observed under realistic execution schedules are

often close to worst case.

For structure storage, the size of the structure must be determined through program anal-

ysis, as discussed in Section 4.1. Basically, we locate the bounds expressions at the point of

allocation and trace back through the graph to produce a simple symbolic expression for the

structure size. The size is independent of k-bounding. We are restricting our attention to

programs in which the lifetimes of structures are known, i.e., can be tied to a particular invoca-

tion/termination events. The lifetime of all structures can be tied to the top-level invocation,

but that misses the point. To recirculate structures as described in Chapter 3, the lifetimes

of all but the first and last versions of the structure must be tied to a window of iterations of

the loop forming the structure recurrence. By limiting the unfolding of that loop, we limit how

many versions of the structure co-exist. This will not be sensitive to variations in the execution

order, and hence the I-structure storage requirement of a loop with a structure recurrence is

linear in the k-bound.

4.3.2 Nested loops

For nested loops, the total resource requirement is linear in each of the k-bounds. Consider a

loop with bound k, containing a loop with bound k2. Each iteration of the outer loop gives rise

to k2 concurrent iterations of the inner loop, giving a resource requirement of the form rl + r 2 k2 .

Since there may be k, concurrent iterations of the outer loop, the total resource requirement is
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of the form

R(ki, k2 ) =ri + k1 (r2 + r3 k 2 ).

For activation frames it is trivial to compute the resource coefficients.3 For token storage, the

constraint system technique can be applied on each code-block to determine the coefficients.

The presence of conditionals in the outer loop may imply that not every iteration invokes the

subordinate loop. With detailed analysis of the conditional it may be possible to improve the

estimate. Otherwise, we must assume the worst case.

For Matrix Multiply, with the k-bound of the inner product set to 3, the token storage

analysis technique presented in Appendix B gives an estimate of

Weat(ko, kin) = 1 + 23ko + 32kok, .

This is an estimate of total token storage, not just waiting tokens. The estimate is somewhat

loose, because it does not recognize the strictness of the innermost loop, and could be improved

with more detailed analysis.

The expression for activation frames is

A(ko, k) = ko + 4kokm,

since the bound for the IP loop is fixed at 3. This is the worst case under all execution orders

and also fits the activation frame requirements measured under the ideal model very closely.

4.3.3 Adjacent loops

So far we have considered only perfect nests of loops, but the situation becomes more compli-

cated as we consider more involved programs. For example, the loop structure for the relaxation

example is shown in Figure 4.7. Here we have five l-bops: an outer loop containing three loops,

one of which contains an additional loop. We call loops at the same loop nesting level adjacent

loops.

For a collection of adjacent loops, the resource requir.oment is essentially the sum of the

resource requirements of the individual loop nests. Note, this assumes that any two loop nests

execute concurrently and exhibit their worst case resource load simultaneously. If they could
3 These resource expressions are analogous to the determination of the number of virtual processors required

in Cytron's DOacross framework[29].
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Figure 4.7: Loop Structure for Relax

be shown to execute serially, the estimate could be reduced to the maximum of the individual

requirements, but this situation is rare in practice and, in general, two loops can not even

be forced to execute serially[861. The more common situation is that adjacent loops overlap

in some fashion, and the nature of the overlap can be quite subtle. Determining when the

peak combined load is provably less than the sum of the peak loads is an interesting problem,

requiring involved dependence analysis, but is not pursued here.

4.3.4 Policy definition

We can now define more precisely what we have been calling a "loop bounding policy." Let

the worst case resource requirements of a program be characterized by a resource ezpression,

R(kl,.. .,k,). This is derived by analysis of the program, and must provide a conservative

characterization of the feasible region for any resource limit, r. For any given r, there are a

large number of valid k-configurations. A resource-limited loop bounding policy is a rule for

computing the various ki, given a resource limit r.

To make this notion more concrete, consider once again the Matrix Multiply example. We

intimated the first policy decision for this program in the previoas section: the innermost loop

allows only a small number of concurrent iterations. This was based on examination of the
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parallelism profile in Figure 2.3, however, a more formal argument to this effect appears below.

The figure indicates that only two iterations are active at any time, however, with the additional

arcs for k-bounding, not shown in the figure, that number increases to three. A policy that

allows the innermost to unfold to this extent corresponds to the rule ki = 3. We have solved

for one k-bound parameter trivially. Taking this for ki, we have the activation frame expression

derived above:

A(ko, km) = k.(1 + 4k,).

Now given a resource constraint, r, we must choose ko and km such that ko(1 + 4km) r

and Pa.e is close to maximal. Following a policy favoring outer loop unfolding, we first assume

k, = 2 and solve for k., using the number of iterations of the outer loop, No, as a maximum

value:

k,, = mrin(N,,

If k0 = No, we use this value for k. and solve for k,,:

k,. = min(N 1, - 4).

The policy embodied in this rule may or may not be a good choice for this program; we need to

develop an understanding of the dynamic behavior of loop programs, based on their structure,

that will guide in choosing the policy for a given loop or loop nest. The policy defines the

general form of a mapping from resource constraints to k-bound configurations; the resource

expression determines the detail.

4.4 Estimating Parallelism

In this section we address the other side of the pclicy question, characterizing the potential

parallelism in loops. We develop a simple model of loop unfolding in the absence of k-bounding,

and then extend this model to include the effects of the k-bounds. An important concept

that emerges from this is the maximum useful unfolding of a loop; where present, this gives a

practical upper limit for the k-bound. Also, we discover several factors that reduce the potential

parallelism in a loop; these are investigated further in the next chapter.
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4.4.1 Simple model of loop unfolding

To characterize the potential parallelism in loops, we develop a very simple model of loop

unfolding, which essentially treats loops as a kind of "soft pipeline." We saw in Chapter 2 that

a loop unfolds when the loop variables that control the predicate spawn off computations that

lag behind. These two aspects of loop structure, the rate at which variables circulate and the

amount of computation that lags behind, play a central role in our model.

To introduce some of the concepts we consider once again the IP example shown in Fig-

ure 2.3. From the parallelism profile we see that a new iteration is initiated every four steps

and each iteration has a duration of eight steps. Thus, at most two iterations can be active at a

time. The variable k controls the loop predicate, and a cycle of four steps is required to initiate

an iteration: L-switch, +1, <=, L-gate. Each time around, tokens are fed into the portion of

the graph that performs the fetch-multiply-add, allowing that portion to execute while the next

iteration begins. The duration of an iteration is the length of the longest simple path from

the output of the predicate to the data input of an L-switch. A total of twelve operations are

executed in each iteration.

Our simple model of loop behavior characterizes a loop in terms of three structural parame-

ters. Each iteration involves executing a certain number of operations, o, over some duration, c,

and iterations are staggered by some amount, i. These parameters are clear in our IP example.

They essentially describe the shape of the graph forming the loop body, namely, the total size

of the graph (o), the length of the cycle that spawns iterations (i), and the length of the critical

path through the body (c). Thus, by definition, i < c. The behavior of a loop can be visualized

as in the top portion of Figure 4.8, where each iteration is depicted as a rectangle of area o and

length c. The height is the average parallelism per iteration, p = o/c. This is a rather primitive

characterization, as the actual profile for an iteration will have an uneven contour, but it will

serve our needs. Since iterations are staggered by i, the number of concurrent iterations grows

for [c/il iterations, but by the time the next one starts the first iteration has finished, and

similarly for the remaining iterations. The loop reaches a steady state with at most [c/il con-

current iterations. This number is quite important, so we will give it a name. We call [ = [c/il

the mazimum useful unfolding of a loop. 4 In k-bounding a loop, we will want to avoid setting

4 In deriving p from the graph of a program we will have to make certain assumptions about latency and
scheduling. The assumptions we will use are zero latency and ideal scheduling, so we might call this pA. It would
be interesting to consider I as well, for communication latency 1, but we do not pursue that line of study.
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Figure 4.8: Simple Model of Loop Unfolding

Based on this model, we can derive the parallelism profile for a loop invocation by counting

the number of rectangles stacked above each point, as shown in the lower portion of Figure 4.8.

We can see that it takes some time to "fill the pipe" initially and to flush it at the end, giving

the profile a trapezoidal shape.' We can see that in steady state we have an average of c/i

rectangles of height o/c, so the asymptotic average parallelism is O/i = ppU. Due to the "fill and

flush" portions, the actual average parallelism will fall somewhat below this mark.

We can formalize this argument as follows. The critical path for n iterations of a loop is the

time to reach the last iteration plus the duration of that iteration, as indicated in Figure 4.8.

Drawing upon the notation introduced in Chapter 2, we can express this as:

r,(n) =(n - 1)i + c (4.1)

$For nested loops, modeling the iterations as rectangles is somewhat defective, as they should be orapentids.
In which case the profile for the nest is a convolution of trapezoids, which gives the kind of bell shape curve we
see for Matrix Multiply in Figure 2.4.
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(Notice, this is essentially the formula describing execution time for an ideal pipeline, where

c is the time required to get into steady state[63]. It is equivalent to the formula derived by

Cytron in modeling DOacross loops[28], where i is the delay per iteration.') Using (4.1) the

average parallelism of the entire loop invocations is:

Pave(f) L_ ri (n)
-r.(n)

no
(n - 1)i + c
=PA (4.2)

1 + (.u - 1)/n

Thus, the asymptotic parallelism, for large n, is py, the average parallelism per iteration

multiplied by the number of concurrent iterations in steady state, which certainly makes sense.

Using (4.2), we see that at n = k essentially half of this value is obtained, and the increase is

slow from that point on, as plotted in Figure 4.9.

PA

n

Figure 4.9: Pa,,(n) According to Our Simple Model

One importdnt conclusion from this model is that for a loop where p is known, it makes

little sense to consider k-bounds larger than p. Our IP example is a case in point. The more

interesting situation is where n < p. In this case the loop has the potential to unfold comple'ely,

and we can examine its behavior as k approaches n. We take up this point below, after verifying

our model against an example program.

'One difference is that here i is the time required for data to first become available for an iteration, whereas
in the DOacross case the delay is deternined by when the last data passed between iterations becomes availabl..
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4.4.2 Validation of the model

To validate the model, we examine how it predicts the behavior of Matrix Multiply. Analyzing

the graph produced by the Id compiler for IP we find oip = 13, ilp = 4, and cjp = 9. Thus,

we have p = 2.25 and p = 3.25 operations per step. The extra operation and extra step in the

critical path beyond what appears in Figure 2.3 are due to the Dk-2 node in the completion

tree, which connects to the L-gate, as discussed in Chapter 3. Even though the program is

compiled using the k-bounded loop schema, we can simulate unbounded execution by using

sufficiently large k-bounds.

Empirical measurements with several values of n show that the critical path length for n

iterations at k = 3 is 4n + 24, while at k = 2 the critical path length increases to 4.5n + 20

and at k = 4 it is 4n + 28. This confirms that the maximum unfolding under the ideal model

is indeed three. The change in the constant term is the number of steps required to clean up

each additional trigger token. Although we have not discussed the dynamic behavior of loops

once the k-bounds take effect, these measurements suggest that the initiation rate is the larger

of the length of the cycle controlling the predicate, i, and c/k.

The critical path measurements also indicate that the prologue and epilogue of the loop

introduce approximately 20 steps on the critical path. The total operations for an invocation

of IP is measured to be 13n + 53, so there about 50 operations outside the loop. We will take

these last two numbers as typical and use them for the other loops as well.

The graph for the body of the middle loop, excluding prologue and epilogue, has 27 nodes,

with a longest path of 10 nodes and a predicate cycle of length 4. Thus, for a single iteration

of the middle loop, including n iterations of the inner loop, we have

i,= 4

o -(n) 13n + 53 + 27, (288, at n = 16)

c.(n) 4n +24 + 10, (98, at n = 16).

With n = 16 we have p, = 2.94 and p,, = 24.5. For the fully unfolded case, the parallelism

for an invocation of the middle loop is

1
Pae ; 72- 1 28.

1 + 1.53

The graph for the body of outer loop has 29 nodes, with a longest path of 10 and predicate
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cycle of 4. We assume the prologue and epilogue of the middle loop involve 50 nodes, with a

critical path of 20, as for the IP loop. Thus, we have

io= 4

o0 (n) = (13n + 80)n + 50 + 29, (4687, at n = 16)

c0 (n) 4n + (4n + 34) +10 + 20, (192, atn= 16)

With n = 16 we get Po = 24.4 and po = 48.

1
Pe ;- 1172 1 293.

1 +3.0

This is reasonably close to the observed number of 287, and is expectedly on the high

side, since we did not include some of the outer level setup and termination. Note that without

accounting for the fill-and-flush behavior of loop unfolding, we would have arrived at an estimate

of 256 x 3.25 = 832. As it is, we get a reasonably accurate characterization of the bell-shaped

parallelism profile of Figure 2.4.

4.4.3 Behavior of k-bounded loops

Now we embellish our model to characterize the the behavior of k-bounded loops, where k < I.

(When the k-bound is greater than the maximum unfolding, the behavior is as in the simple

model above, although from a policy viewpoint we will want to avoid such situations.) The first

k iterations are initiated in a staggered fashion, just as under the simple model. The (k + 1)th

iteration is delayed until the first iteration finishes, as indicated by the hatched region in the

top portion of Figure 4.10. The remainder of the second wave of iterations can be initiated

with the original stagger, and so on. Thus, the loop executes as [n/kl waves of k iterations

each, with successive iterations in a wave staggered by i, as depicted in Figure 4.10. Here

we model two effects that cause the average parallelismn to drop below kp: the fill-and-flush

phenomenon observed in the unbounded case and the partial wave that occurs when k does not

divide n. Observe, however, that the combined effect is fairly even. The worst case in terms of

fill-and-flush is when k divides n, which is the best case in regard to the completeness of the

final wave. The worst case in terms of the partial wave is when n mod k = 1, which is the best

in regard to fill-and-flush. In between, moderate penalties are combined.

To gauge how reasonable the model is, we consider a simple example. Figure 4.11 shows

profiles for Matrix Multiply with the outer loop bounded at 3 and the middle loop allowed
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Figure 4.10: Model of k-Bounded Loop Unfolding (shown with k =3)
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to unfold completely It can be seen that execution does, indeed, proceed in six waves of

three iterations, except the last which contains only one. However, the profile of a wave is the

summation of the bell-shaped profiles of the three instances of the middle loop, since that is

subject to fill-and-flush.
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Figure 4.11: Ideal Parallelism and Resource Profiles for Matrix Multiply, 16, with Outer
Loop Bounded at 3

Under our bounded loop model, the critical path of a k-bounded loop invocation can be

given in terms of our structural parameters as

7-,.(n, k) = [i c + ((n - 1) mod k)i. (4.3)

Observe, that if i is small compared to c then there is almost no change in critical path for

the range n/2 < k < n. Thus, as k is increased in this range, little increase in P.,, is obtained.

Cytron observes a similar phenomenon[29] and suggests a local "trimming" optimization, which
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can be stated in our terms as follows. Having arrived at loop bound k for a loop executing a

total of n iterations, if k does not divide n it may be possible to reduce k without increasing

the number of "waves" and, thereby, make more resources available elsewhere. We can obtain

this by taking

V= VITV
The big pay-off here is when k falls in the "two-wave" range, discussed above. 7

To validate our model of k-bounded loop behavior, we look once again at our Matrix Multiply

example. Executing the program for all points in the space of k-bounds for the outer and middle

loops, we get the data shown in Figure 4.6 above. The IP loop is kept at k = 3.

Applying (4.3) to the middle loop, we have

,r.(16,k.) = -110 +(15modk,)4

and for the outer loop

ro. (16, k0 , kin) .. [1] r0 (16, kin) + (15 mod k,)4,
Pooe(16, ko, km) = _ 7500

k,.) 75,000
P,.,r(16,6ko, k kin)'ro. (16, ko,, k,..

p . s16,A.Ae x 100, the estimated parallelism as a percentage of the mea-

sured Po, over the entire k-space. P.,ae(16, k,, kin) is an underestimate everywhere, generally

about 90% of the measured value, excluding the most tightly bound point.

4.4.4 Relationship of the model to graph structure

To ground this structural model, it is important to see in some detail how it relates to the

structure of the dataflow graph itself. Simple loops with a single loop variable and no condi-

tionals, such as the outer two loops of inat,ix multiply, can be cast into this model directly.

The initiation rate, i, is simply the lengtn the index variable cycle, since the predicate can

only be evaluated at the rate this variable circulates. The duration of an iteration is the length

of the longest simple path in the graph from the output of the predicate, assuming no deferred

reads, since each iteration initiates a traversal of this path.'
7 Polychronpouloo presents a concept related to trimming, the efficiency index of the 1oop[77], which in our

framework would be given by ei(k) = . This basically weights the partial wave effect by the number of
waves.

'Deferred reads raise a variety of subtle issues, which we address briefly at the end of the thesis. In the
main development we are in.eresLed in a crude characterization of the behavior of a loop, rather than a detailed
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16 92 93 94 93 95 95 97 97 97 97 96 96 96 95 100
15 89 89 91 90 91 90 92 91 91 91 91 90 90 89 94
14 91 90 91 89 91 90 92 92 91 91 91 91 90 89 95
13 91 90 91 90 91 90 92 92 91 91 91 91 90 90 95
12 91 90 91 90 91 90 92 92 92 91 91 90 91 89 95
11 91 90 92 90 91 91 92 92 92 91 91 91 91 90 95
10 91 90 90 90 91 90 92 92 92 91 91 91 90 89 95
9 89 90 92 91 92 91 92 92 92 92 91 91 91 89 95

k. 8 89 90 92 90 92 91 93 92 92 92 91 91 91 90 95
7 90 88 90 88 89 88 91 90 90 90 90 89 89 88 93
6 90 90 89 90 89 89 92 90 90 90 90 89 89 87 93
5 91 87 89 89 88 90 89 88 88 89 89 88 88 86 91
4 87 90 91 89 89 89 91 91 90 90 89 89 88 87 91
3 93 90 90 90 89 87 90 90 88 89 89 87 86 86 90
2 83 93 86 87 89 90 89 87 90 87 88 86 88 84 90

112 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k'.

Figure 4.12: Pa,,e(16, ko, k-,) as a Percentage of Measured Pv,,e (ko, ki) Over Entire k-Space for
16 x 16 Matrix Multiply

The IP loop can be treated in the same fashion, even though it has two loop variables. This

is because the cycle for sum is shorter than that for k, so iterations terminate at the rate they

are initiated. The loop unfolds because values pipeline down paths from the k cycle to the sum

cycle.

At this point, one might be led to believe that all loops have bounded unfolding under the

fair scheduling embodied in our ideal execution model. Consider, however, the loop shown in

Figure 4.13. The cycle involving the predicate is again of length four, so a new iteration is

initiated every four steps. However, the cycle for the other loop variable is of length six, so

the termination period is six steps. Thus, the number of concurrent iterations grows arbitrarily

under fair scheduling. Tokens simply queue on the arc connecting the two cycles as the loop

unfolds, as can be seen in Figure 4.14. However, even though this loop does not have a natural

unfolding limit, it has a natural limit of useful unfolding. Suppose that the fast variable is

slowed down to a period of six steps, after being allowed to get one iteration ahead. This does

not change the critical path, since the control value is available at the L-switch when the data

prediction of its execution schedule. It is not difficult to embellish the model presented here to account for fixed
communication latency in sending a value from a node in the graph to its successors; non-zero weights could
be charged for such arcs. However, with deferred reads the latency can be arbitrarily large, even in the ideal
execution model.
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value of the slow cycle arrives, and furthermore where the paths merge in the body the data

value is present by the time it can be used. By bounding the loop, the initiation rate is forced to

match the termination rate in steady state, thereby slowing down the fast variable. Because this

reduces the overhead in the clean-up of the allocate iterations, reducing the k-bound actually

improves the critical path.

Figure 4.13: Example Loop with No Natural Unfolding Limit

In steady-state, the useful unfolding of a loop is determined by the longest cycle in the graph,

whether or not it controls the predicate. The useful unfolding, ji, can be computed as the length

of the longest path through the graph, divided by the length of the longest cycle, plus a small

constant limited by the number of loop variables. Of course, in the context of conditionals,

higher-order functions, and function calls, it may not be possible to determine the longest path,

or even the true dependencies between loop variables. We will only be interested in applying

this calculation directly in innermost loops, because elsewhere it is generally impractical to

determine the three parameters. These innermost loops will often have a small /L, since c is

small. The other important case, which is often difficult to detect, is where c is large, but i ; c.
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4.4.5 Execution overhead

In supporting a k-bounded loop, the overhead, measured as the number of instructions executed,

is proportional to k. There are a certain number of instructions executed to set up and clean up

each allocated iteration. In the TTDA schema shown in the appendix, this overhead is 7k, not

including the cost of loop constants. The overhead in Monsoon graphs is considerably larger,

about 30k. Generally, loop constants will be stored in each activation frame or associated with

the iterations in some manner. The empirical studies presented throughout the thesis involve

a fixed cost per loop constant, independent of k, and thus have a certain artificial bias. In

general, we will arrive at k-bound assignments that keep k for the innermost loops small, which

implies that this bias also is fairly small. Recall, P.,e = r1 /r-, so it is the assumption that the

total number of instructions, rl, is essentially constant that allows us to treat minimum critical

path and maximum P., as identical goals.

4.5 Static Invocation Tree

In developing the method of estimating resources, we started with a single loop, then considered

nesting, and then adjacent loops. Because the lexical structure and the dynamic structure of

the programs we examined were closely related, we were able to draw informal loop structure

diagrams and derive meaningful resource expressions. In this section, we introduce a static

representation of the dynamic structure of loop programs, called the static invocation tree,

which generalizes those diagrams. It provides the framework for building resource expressions

and for characterizing the dynamic behavior of programs. Before defining the static invocation

tree, let us review what we would like it to represent.

In Chapter 1, we presented the concept of an ezecution tree, describing the entire history

of a program. Each code-block invocation and each iteration performed during execution of

the program appears as a node in the tree and the children of a node represent the invocations

it performs. Thus, a loop executing n iterations corresponds to n nodes, each of which may

have several children, if the body includes several code-block invocations, or even a sequence

of children, if it invokes a nested loop. Loops introduce a dynamic branching factor in the

execution tree, while multiple invocations within a code-block introduce a static branching

factor. For example, the execution tree for Matrix Multiply with n = 4, rn = 3, and s = 2
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would be as depicted in Figure 4.15.

Figure 4.15: Execution Tree for Matrix Multiply, with (4 x 2) and (2 x 3) Matrices

At any point during the execution of a program, only a portion of the execution tree ex-

ists. Let us call this the active subtree. The size of the active subtree dictates the resource

requirement of the program. Its size and shape dictate the parallelism offered. The k-bound

for a loop limits the branch factor of the active subtree at the corresponding node. Thus, with

all the loops bounded to two, the active subtree may be as depicted by darkened nodes in

Figure 4.15. We are not concerned with exactly what part of the execution tree is active, but

rather with the size and shape of the active subtree. This is precisely what is described by our

resource expressions. By introducing a loop unfolding parameter at each loop node, we can

form a concise summary of the active subtree.

To characterize the resource and execution behavior of a program, we construct a static

synopsis of the active portion of execution tree, called the static invocation tree. Starting at

the top-level code-block, attach a child node for each code-block invocation appearing in the

graph. The loop diagrams introduced informally above are a special case of this, where every

code-block is a loop and is invoked at exactly one point in the program. More generally, a node

may represent either an acycic code-block or a loop, and in the latter case it is parameterized

by the k-bound. The static invocation tree preserves the structure of the execution tree in a

compact representation. A given setting of the k-bounds essentially determines the size and

shape of the active subtree.

The restriction placed on the class of programs we consider in this thesis can now be formal-

ized: we only consider those programs for which it is possible to construct the static invocation

tree. The ability to do so is related to the more common compilation concept of a call graph,

in which directed arcs represents the "calls" relation. In contrast, the static invocation tree
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describes the dynamic context of each call. It can be constructed if the call graph contains no

cycles. This proviso excludes general recursion, as well as use of higher-order functions beyond

what can reasonably be analyzed statically. Experience with the current Id compiler shows

that even in the presence of extensive and fairly sophisticated use of higher-order functions the

static invocation tree can be formed, although this relies heavily on the use of tuple elision,

arity analysis, and function in-lining to eliminate the "higher orderedness".

We will usually refer to the static invocation tree simply as the call tree. It provides a

framework for program analysis and for recording the results of that analysis. Our notation

for call trees is shown below for the Matrix Multiply program. Depth is indicated by levels

increasing to the right. Internal loops are indicated by "*" followed by a sequence of numbers

separated by dashes. The asterisk is short-hand for the lexically enclosing name and the numbers

serve as unique identifiers. Square brackets indicate loop nodes and hold a pair of annotations.

The first is a symbolic expression for the iteration count. The second is the maximum useful

unfolding, p, as determined by path length analysis. Where these cannot be derived by analysis

a question-mark appears. The numbers in parentheses give information about the resource

requirements of the active subtree rooted at the node under tightly constrained execution;

these are discussed later.

Ma trixM ult[N, ?1(14 )-- *-O[M, ?1(+_l P[S,2.251(2)

The policy for handling this structure will have to address nesting, as discussed earlier in this

chapter. The call tree for Relax is shown below. It exhibits branching as well as nesting, plus

we must deal with I-structure resources, not indicated here, in addition to local storage. The

bounds employed in the different branches implicitly determine the ratio of resources available

to the respective branches. So here we need guidelines for splitting resources across branches,

as well as dealing with nesting.

relax[STEPS,?](22) -*-2[n-3,?](+_*-2-0[n-3,4](2 )

--- 1[n-3,4](2)
--*-0[n-3,4](2)

Branching arises more generally through function composition. For example, a program

that multiplies three square matrices could be expressed in Id as:
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DEF 1M3 A B C n a m - Matrixmult (Matrixrult I B nL n n) C n n n);

and would generate the call tree shown below. Note that 1atrixfult appears twice and the

symbolic iteration counts are further specialized to reflect their common definition. Branching

does not indicate, a priori, whether the two sub-computations will execute serially or in parallel.

M M 3(29 )F-MatrixMult[N,?](14.--" 0IN ](6)-IP[N,2](2)

t- MatrixMuIt[N,?](14 -*0IN.?](6)-IP[N,2](2)

A more realistic scenario is offered by the Simple code. The calling tree has nearly 300

nodes and extends seven levels deep. There are several overlapping phases of computation

represented by the various branches and a variety of loops. However, some basic guidelines

focus our attention rapidly on the crucial portion of the program.

Resource analysis is expressed in terms of the call tree, working from the leaves to the

root. For a given setting of the k-bounds it is straightforward to estimate the size of the

active subtree, and for the policies presented later it will be important to compute the size

of each subtree assuming the k-bounds are at the minimum value. These numbers are shown

for activation frames in parentheses in the call trees above. Symbolic resource expressions can

be built by working up the tree as described above, however, we win not build these resource

expressions explicitly for large portions of the tree. For a loop nest, we will build them implicitly

in constructing the formulae that solve for the k-bounds. Through various kinds of dependence

analysis, we identify substructures that are good candidates for unfolding, and loops that should

not be permitted to unfold. The resource management code we add to the program essentially

takes a resource parameter introduced at the root and "pushes" resources toward the leaves.

This does not imply that the policy employed must have an "outer-in" form; in many cases we

will be able to deal with several loops in a nest together.

4.6 Conclusions

We have given precise me-,,ing to the term "loop bounding policy" and laid down how we

will establish such a policy. This includes guidelines for analyzing the resource requirements of

programs, structured in terms of the static invocation tree. Furthermore, we have developed
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a simple model of the behavior of loops, in order to focus our efforts in analyzing potential

parallelism.

The model developed here nicely predicts the behavior of very simple programs, and can

serve as a basis for developing a loop bounding policy. One of the important concepts to emerge

is that of a natural limit on the useful unfolding of a loop, p. Already we have established the

first component of our overall policy; loops that have small, fixed useful unfolding should be

tightly bound. This can be determined for innermost loops by simple path-length analysis,

but broader coverage can be obtained by more powerful analysis techniques, including inter-

procedural dependence analysis and array reference analysis[87, 88]. The model also offers some

simple guidelines as to what sort of unfolding is most advantageous.

The next chapters deal with the various calling tree topologies as follows. Chapter 5 exam-

ines simple nested loops. Chapter 6 introduces the additional complexity of recurrences over

data structures. Then, Chapter 7 examines branching. Finally, in Chapter 8 we carry out the

resulting policy on a large program.
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Chapter 5

Controlling Nested Loops

In this chapter and its sequels we study the behavior of progressively more complex program

topologies and develop policies to deal with each, eventually covering the possible loop struc-

tures. Here we focus on nests of simple loops with no branching, except possibly in the innermost

loop. We assume the recurrences in the outer loops are weak and the only resource of concern

is local storage, i.e., activation frames or tokens. I-structure storage is considered in the next

chapter.

The goal here is to understand the effects of loop unfolding at various levels. We begin by

exploring ramifications of the simple theory of loop behavior developed in the previous chapter.

The observations arising from this study suggest a family of simple policies. We then evaluate

these policies on a simple example, comparing the performance they achieve with the optimum

achievable under the ideal execution model for several resource constraints. We also formulate

and test two policies that are in opposition to the theoretical guidelines, to understand better

the significance of the guidelines. Finally, as further sensitivity analysis, we test these policies

on a small set of other programs with slightly different topologies.

5.1 Salient Properties of Loop Unfolding for Nested Loops

We begin our study of nested loops by examning implications of the simple theory of loop

unfolding developed in Chapter 4. The construct we consider is a nest of FOR loops with loop

bounds k1 , k 2 , ... , kin, where the only recurrence in the outer loops is the index variable and pi

for each loop is fairly large. This generally implies that the inner loop contains some sizable

computation.
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The primary factor determining the amount of exposed parallelism is the number of concur-

rent instances of the computation in the inner loop, e.g., the number of concurrent invocations

of IP in our Matrix Multiply example. This number is simply the product of the k-bounds, so,

for a fixed product of the k-bounds, we can consider the trade-offs in allowing unfolding at one

loop level or another.

5.1.1 Parallelism

Observation 1 For a fized product of the k-bounds [T= ki, the greatest parallelism is usually

obtained when the unfolding of the outer loop is mazimized.

This is fundamentally a fill-and-flush argument; a single, long pipelined operation is better

than a sequence of shorter pipelined operations because the fill-and-flush penalty is incurred

once, not several times. The advantage of outer loop unfolding can be argued in terms of

unfolding efficiency, but we take a more direct approach here.

Consider a doubly nested loop where the outer loop has bound kj, executes a total of ni

iterations, and has initiation rate il. Suppose the inner loop is similarly described by k2,n2 ,

and i2, with critical path per iteration c2 . Then, using (4.3), we have

r7,(njjk1 ,n 2,k 2) =[j1-] -r.(n2 ,k 2 ) +((n, - 1) mod kj)ij

= ( [1-1 C2 + ((n2 - 1) mod k 2 )i 2 ) + ((ni - 1) mod ki)i 1

= [ji] [ i] C2 + [1] ((n2 - 1) mod k 2 )i 2  (5.1)

+((n, - 1) mod ki)il

The first term in (5.1) is the "real work," while the second is the fill-and-flush penalty

incurred in the inner loop and the last is the penalty incurred in the outer loop.

To simplify this, assume each k, divides ni, so we have

r~(n~kin2 ,k) = nln2  !(k1+1

-r.(nj,kj,n2, k2) = Ce2 + -(k2 1)i 2 + (ki - 1)ij. (5.2)

If the loops are both simple FOR loops, then il = i2, and the penalty is minimized by

maximizing kj, for a given product k = k1 k2. The observation is stated in a fairly weak

form, because non-linearities (due to the ceiling operations) introduce local perturbations.
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This observation is substantiated by empirical measurements of our Matrix Multiply exam-

ple, as shown in Figure 5.1. The top number in each entry is the measured Pave. Entries on the

upper-left to lower-right diagonals form contours of fixed k-bound product. In all cases, Pave

increases with ko, the bound for the outer-loop.

16 84 147 228 287
(379) (669) (1,230) (2,187)

8 45 83 138 184
(195) (341) (629) (1,190)

k, 4 23 43 74 101
(103) (177) (321) (609)

2 12 22 38 52
(56) (93) (165) (309)

if 2 I  4j 81 16
k,

Figure 5.1: Pave and (Wma.) for 16 x 16 Matrix Multiply Under Various Loop Bounds

This observation suggests a policy favoring outer loop unfolding. However, (5.2) indicates

that the advantage of outer loop unfolding is most pronounced at moderate resource levels.

When resources are scarce, the product k = kjk2 is small and both the penalty terms are small

compared to the real work. When resources are plentiful, the product is large, say kjk2 z n,

and the two penalty terms are roughly equal. In the intermediate range, say klk 2 - nl, the

effect is most pronounced.

5.1.2 Resource requirements

Observation 2 For a fized product of the k-bounds [-1J= ki, the resource requirement is mini-

mized by allowing unfolding of the inner loop.

It is enough to look at the m = 2 case. The resource requirement of a (kj, k2) configuration

is given by an expression of the form

R(kl,k 2 ) = ri + k1(r2 + r 3 k 2 ). (5.3)

For a fixed product kik 2, this is minimized by minimizing ki.

To validate this, the maximum token storage requirements for various k-bound configura-

tions for Matrix Multiply are shown in parentheses in Figure 5.1. In all cases, these decrease
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along the diagonals with increased unfolding of the middle loop, kmn. Fitting an equation of the

form in (5.3) to the first few entries we get

W(ko, ki) = 9 + 5k. + 9.5kokm.

Note that in forming this estimate we are considering the maximum resource load at any point

under the ideal execution model. The maximum load under any possible schedule may be

higher. As noted previously, the token storage analysis technique of Appendix B gives a bound

that is greater by a factor of three:

W,t(k,, kin) = 1 + 23k, + 32kokm.

This bound is somewhat loose, because it does not recognize the strictness of the innermost

loop, and could be improved with more detailed analysis. The formula for activation frames is

A(ko, kin) = ko + 4kokm,

since the bound for the IP loop is fixed at 3. This is the worst-case under all execution orders

and also fits the activation frame requirements measured under the ideal model very closely.

So far, we see that outer loop unfolding admits greater parallelism, but at greater resource

cost, than inner loop unfolding. This is encouraging, since, from a policy viewpoint, the best

situation is if all configurations offer the same parallelism per unit resource; then, they are

all optimal. However, we need to examine the trade-offs in more detail to determine whether

one effect dominates. Referring to Figure 5.1, observe that in going from configuration (k. =

16, k, = 2) to configuration (k, = 8, k, = 4) the reduction in P.,e is 1%, while the reduction in

W,az is 11%. However, this savings does not continue for the next step along the diagonal. For

local storage, the improvement in the resource requirement appears significant only for small

values of the inner loop bound. Consider a pair of nested loops with resource expressions as

given by (5.3). For a fixed product klk 2, the absolute improvement due to doubling k2 and

halving k, is r 2k,/2. The relative improvement is no more than r2 Assuming the ri are2r2+2rsk2"

roughly equal, for k 2 > 4 this falls below 10%.

More generally, for a fixed product of the loop bounds, k = k1k2, we can determine how

much the outer loop can unfold and keep the increase in resource usage, relative to the best

case, under some fraction y. After some algebraic manipulation, we get

r 3

k9 4<7 k-.
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If we look at activation frame usage in our matrix multiply example, r3 = 3 and r2 = 1, so with

- = 10%, we can let k, be as large as k/2. Thus, analysis of resource requirements suggests

that a small amount of inner loop unfolding is valuable for most nested loops, but the return

diminishes rapidly. Thus, a policy favoring outer loop unfolding can generally be improved

by allowing a small amount of inner loop unfolding as well. A strong bias toward inner loop

unfolding may have to be introduced when the re3ource coefficient for the outer loop is large,

as we will see in the next chapter.

5.1.3 Execution overhead

Observation 3 For a fized product of the k-bounds I'l ki, ezecution costs are minimized by

allowing unfolding in the outer loop.

Using the basic k-bounded loop schema, the overhead for loop setup and cleanup in a

ko, k, configuration is of the form E(kl, k2 ) = elk, + nie2 k2 , for n, iterations of the outer

loop. For all but trivial values of nl, this is minimized by minimizing k2. (If loop setup and

cleanup are hoisted into the outer loop, the overhead is E(kl, k2 ) = ki(el + e2 k2 ), which

weakly favors inner loop unfolding.)

However, the real issue here is not the absolute overhead, but the overhead relative to the

total work. For the TTDA schema used in our Matrix Multiply example, we have ei = 7, so

the overhead per unit k, is 112, while the overhead per unit k0 is only 7 on a 16 x 16 problem.

Setup and cleanup are not hoisted out of the middle loop. Even using the basic schema, the

overhead due to setup and cleanup of the outer and middle loops amounts to no more than

2.5% of the execution cost, as shown in Figure 5.2. The bulk of the cost in this program is the

IP loop, which is tightly constrained. In contrast, unrolling IP loop once reduces the overall

execution cost by nearly 15%.

In the previous chapter, we observed that innermost loops have small useful unfolding

(, = c/i), unless the loop body is quite large, i.e., c >> i. When the loop body is large,

the relative overhead due to k-bounding will be fairly small. On the other hand, when the

loop body is small, the useful unfolding is small, so a large k-bound is useless, and the relative

overhead per unit k is large. Therefore, it is very important to constrain small, deeply nested,

innermost loops.
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16 74,251 74,475 74,923 75,819
8 74,195 74,419 74,867 75,763

ko 4 74,167 74,391 74,839 75,735

2 74,153 74,377 74,825 75,721
2 4 8 16

km,

Figure 5.2: Dynamic Operation Count for 16 x 16 Matrix Multiply Under Various Loop Bounds

5.1.4 Partial-wave effect

Observation 4 For a loop ezecuting ni iterations, 1L 0 for n/2 < ki < n. Thus, k-bounds

in this range make poor use of resources.

This follows directly from (4.3), because in this range the reduction in critical path due

to increasing the loop bound by Ak is only Aki. The loop executes as two waves, and

increasing k simply depletes the second wave. Thus, if we were to compute Pa,," over the

entire space of k-bounds, we would expect levelling in the parallelism contour, as shown in

Figure 5.3. The flat region for the outer loop is more serious than that for the inner loop,

as can be seen in (5.1), but the intersection of the flat regions is invariably inefficient.

Examining Figure 4.6 of the previous chapter (page 68), we see that there is almost no

increase in Pa,,e for 9 < k, < 15 at any kn. This phenomenon is less pronounced for km in the

same range. Figure 5.4 shows the resource cost in tokens per parallel operation throughout the

k-space. Contours are drawn at eight tokens per operation.

The partial wave effect suggests that it is advantageous to avoid k-bounds in the range

n/2 < k < n, regardless of which loop level is favored. However, the effect is most pronounced

for outer loops. Furthermore, it is most important to avoid the upper end of this range.

5.2 Example Policies

In this section we examine a variety of simple policies that stem from the observations above and

evaluate their performance on the Matrix Multiply example. We then explore two policies that

do not reflect these observations to gauge further the importance of the theoretical guidelines.

A policy defines a crude mapping of resource values to k-bound configurations, but the details
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Figure 5.3: General Properties of k-Space

16 4.5 4.9 4.6 5.3 5.2 5.9 5.4 5.9 6.4 6.8 7.2 7.6 7.9 I 8.2 7.6
15 7.7 -. 1 7.3 [8 8. 9.0 7.9 8.6 9.2 9.9 10.5 11.0 11.4 11.7 10.4
14 7.4 7.7 6.9 7.6 7.5 8.2 8.8 9.4 10.0 10.5 10.9 11.2 10.0
13 6.9 7.1 6.4 7.5 7. 7.9 7.0 7.7 8.3 8.9 9.4 9.9 10.3 10.6 9.5
12 .4 6.6 5.9 7.0 6.6 7.4 6.6 7.2 7.8 8.3 8.8 9.3 9.7 10.0 9.0
11 5.9 6.1 5.5 6.5 6.1 6.9 6.1 6.6 7.2 7.7 8.2 8.6 9.1 9.3 8.4
10 5.4 5.5 5.0 5.9 5.6 6.2 5.6 6.1 6.6 7.1 7.6 8.0 8.3 8.6 7.8
9 4.8 5.1 4.6 5.4 5.1 5.7 5.0 5.5 6.0 6.5 6.9 7.2 7.6 7.9 7.1

ko 8 4.3 4.5 4.1 4.8 4.6 5.1 4.6 5.0 5.4 5.8 6.2 6.5 6.9 7.1 6.5
7 5.7 5.8 5.2 6.1 5.7 6.4 5.6 6.1 6.6 7.1 7.6 1 8.0 8.5 8.8 7.8
6 5.0 5.1 4.5 5.3 5.0 5.5 4.9 5.3 5.8 6.2 6.6 7.0 7.3 7.6 6.9
5 5.5 5.5 5.0 5.8 5.4 6.1 5.3 5.8 6.3 6.7 7.1 7.5 8.0 871 7.4
4 4.5 4.7 4.1 4.7 4.4 5.0 4.3 4.8 5.1 5.5 5.8 6.2 6.5 6.7 6.0
3 5.3 5.4 4.7 5.4 5.0 5.5 4.9 5.3 5.7 6.1 6.5 6.9 7.1 7.4 6.7
2 4.7 5.0 4.2 4.8 4.6 5.1 4.3 4.7 5.2 5.5 5.8 6.1 6.5 6.6 5.9

D 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
k,,

Figure 5.4: Tokens per Concurrent Operation (Wmaz/P,,,e) Over Entire k-space for 16 x 16
Matrix Multiply
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of the mapping are determined by the particular resource expression used. As much as the

optimization viewpoint put forward in Chapter 4 may be an absuid method of program analysis,

it provides a powerful empirical methodology for evaluating individual policies. We can compare

the performance obtained with the k-bound assignment determined by a given policy for a

resource constraint r against the best performance achievable within that constraint under the

ideal model. This provides a common reference point for the various policies and indicates the

overall room for improvement. An assignment may be suboptimal for two reasons: the policy

may deviate from the optimal k-configuration on a given resource contour, or the resource

expression may underestimate the feasible region.

We consider policies formulated against three resource expressions: activation frames, to-

kens as determined by the analysis in Appendix B, and tokens as determined empirically. As

presented previously, for our Matrix Multiply example these are

A(ko, k,,) = ko + 4kkr

Wet(ko, km) = I + 23k, + 32kok,.,

W(ko, k,) = 9 + k+ 9.kok

The first two resource expressions are derived through program analysis, although the second

overestimates waiting token usage under the ideal model. The last is derived by fitting a curve

to resource values measured under the ideal model. The error under this approximation is

shown in Figure 5.5 for a selection of points, indicating that the fit is quite good. It is, in fact,

an upper bound everywhere. The A and W expressions characterize the feasible region under

the ideal execution model accurately enough to isolate the effects due to choice of policy, while

the Wet gives an indication of the cumulative effects.

For each resource expression, we produce a corresponding expression for each of the k

parameters in terms of the others and the resource parameter. Given resource limit r and

k-bound k,, let Ko(r, ki) be the largest value of ko such that R(ko, k,) _< r and similarly for

Kn(r, ko). Thus, for frame storage limit A,

tI A

K(A,ko) = max ,2)
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Figure 5.5: W = E for Various Loop Bounds.

for token storage limit W,

ko(W, k,) = max+T 9  ] ,2)

iT - 9- 5k,
k,(W, ko) = ma .2lo 2

and, for estimated token storage limit W'

ko(w', k,) = max 32mJ2)

km,(w',ko) = max(LW - 1 -- 2 3 koj 2 )32ko J

These essentially reflect the code that is generated in augmenting the program to set the loop

bounds.

5.2.1 Outer-In resource-limited policy

The first policy we consider derives from Observation 1. The outer loop is relaxed with the

inner loop tightly bound until the resource limit or the outer loop iteration count is reached;

after this point the inner loop k-bound is relaxed. This corresponds to a k-curve that traverses

up the k, = 2 line till k = n, and then along the k = n line. To implement this, we compute

k, assuming km is at its minimum value, and then solve for k, using this k., as follows:

k, = mm (k 0 (r, 2), n)

k, = min(km (r, k,),n)

The behavior of this policy for our Matrix Multiply example is shown in Figure 5.6 for

several activation frame limits A. The first column gives the resource limit and the second

and third show the k-configuration selected for that limit. The fourth column shows the peak
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resource load with this configuration under the ideal execution model and the fifth shows this

as a fraction of the resource limit. Note that in all cases the resource limit is honored, and at

some point in the computation the resources are almost completely utilized. The sixth column

shows the Paiie achieved under the selected k-configuration, the seventh shows the maximum

Pa.e achievable under the ideal model for this resource level, and the last column gives the ratio

of these. The Outer-In policy falls short of the maximum achievable parallelism by 20% when

resources are tightly constrained. Where the policy is suboptimal, the optimal k-configuration

is indicated in the last column in parenthesis, (k,, ki). The results in the last column are

summarized in Figure 5.9 by the points indicated with circles. The other points in that figure

represent the behavior of the policies discussed below.

A ] kok. A,... Amz/A Poo , Opt Pave/Opt
50 5 2 45 0.90 23 28 (2,6) 0.82

100 11 2 99 0.99 45 56 (4,6) 0.80
200 16 2 144 0.72 84 106 (8,6) 0.79
400 16 6 400 1.00 183 183 1.00
600 16 9 592 0.99 232 232 1.00
800 16 12 784 0.98 242 242 1.00

1,000 16 15 976 0.98 254 254 1.00
1,200 16 16 1,040 0.87 287 287 1.00

Figure 5.6: Results of the Outer-In Frame-limited Policy on 16 x 16 Matrix Multiply for Several
Activation Frame Limits

Figure 5.7 shows the behavior of this policy on our Matrix Multiply example under several

token limits, W. In six out of ten cases it is optimal, and in all but one case, it is within 5%.

It falls short when resources are tight and an improvement could be made by exchanging outer

loop unfolding for inner loop unfolding. Excepting the case where the resource limit is below

that of minimum unfolding, the resource limit is honored and resources are well utilized. These

results are su-nmarized in Figure 5.10 by the points indicated with circles.

Finally, Figure 5.8 shows the behavior of this policy when the formula derived from worst-

case token storage analysis of the graph is employed. Here, we fall below optimal by a factor of

three in most cases. These results are not surprising, since the analytic formula overestimates

the actual requirements under the execution schedule implied by the ideal model by this factor.

Below, we consider only the other two resource expressions in evaluating policies.
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W .ko ,k. Wa. I Wmo 3 /W [P., [Opt [ Pae opt
50 2 2 56 1.12 12 12 1.00

100 3 2 80 0.80 15 22 (2,4) 0.68
200 8 2 195 0.98 45 45 1.00
400 16 2 379 0.95 84 84 1.00
600 16 3 524 0.87 108 109 (8,7) 0.99
800 16 4 669 0.84 147 147 1.00

1,200 16 7 1,094 0.91 187 187 1.00
1,500 16 9 1,366 0.91 232 235 (16,10) 0.99
2,000 16 12 1,742 0.87 242 249 (16,14) 0.97

2,500 16 16 2,187 0.87 287 287 1.00

Figure 5.7: Results of the Outer-In Token-limited Policy on 16 x 16 Matrix Multiply for Several
Target Token Storage Limits

W ilk. km W..z W[Wa /W P.v Opt [Pave/Opt]
50 2 2 56 1.12 12 12 1.00

100 2 2 56 0.56 12 22 0.55

200 2 2 56 0.28 12 45 0.27

400 4 2 103 0.26 23 84 0.27

600 6 2 149 0.25 30 109 0.28
800 9 2 218 0.27 45 147 0.31

1,200 13 2 310 0.26 45 187 0.24

1,500 16 2 379 0.25 84 235 0.36
2,000 16 3 524 0.26 108 249 0.43

2,500 16 4 669 0.27 147 287 0.51

Figure 5.8: Results of the Outer-In Token-limited Policy using Analytical Worst-Case Token
Usage on 16 x 16 Matrix Multiply for Several Target Token Storage Limits
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Figure 5.9: % Optimal Pae for Five Activation Frame Limited Policies on Matrix Multiply,
16 x 16
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Figure 5.10: % Optimal Pa.e for Five Waiting Token Limited Policies on Matrix Multiply,

16 x 16
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5.2.2 Jog-Outer-In resource-limited policy

Observation 2 suggests that we should bias our policy to allow a small amount of inner loop

unfolding, especially when resources are tight. T encompass this, we embellish the Outer-In

policy to allow middle loop unfolding until k_ = 4, before allowing outer loop unfolding. To

effect this, we make a first guess at k, assuming k, = 2, but setting an upper limit. Then we

compute ko based on this guess. Finally, we solve for k,, using ko. Thus, our Jog-Outer-In

Resource-Limited policy is given by:

k = min(Km(r,2),4) (Compute km assuming k,, =2)

km min(km'(r,ko,),n)

The behavior of this policy is shown in Figures 5.11 and 5.12 for activation frame and token

storage limits, respectively. It is compared with the Outer-In policy in Figures 5.9 and 5.10,

as indicated by plus signs (+). It performs better under tight resource limits than the simple

Outer-In policy, but suffers at moderate resM1 .e !iinit.s, e.g., A = 200 and IV = 600. The

improvement under tight resourc- Lits is more pronounced for the token-limited policy, since

the linear term in the resource xpression is comparatively larger than that for activation frames.

This means the resource contours are more asymmetric, favoring inner loop unfolding.
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IA ko [km I Am.. I Amax/A I Pave [ Opt Pave/Opt]
50 2 6 50 1.00 28 28 1.00

100 5 4 85 0.85 44 56 (4,6) 0.79
200 11 4 187 0.94 84 106 (8.6) 0.79
400 16 6 400 1.00 183 183 1.00
600 16 9 5P2 0.99 232 232 1.00

800 16 12 784 0.98 242 242 1.00
1,000 16 15 976 0.98 254 254 1.00
1,200 16 16 1,040 0.87 287 287 1.00

Figure 5.11: Results of the Jog-Outer-In Frame-limited Policy on 16 x 16 Matrix Multiply for
Several Activation Frame Limits

W 11 ko k,. W.. W.,o/W Pve IOptI Pave/opt
50 2 2 56 1.12 12 12 1.00

100 2 4 93 0.93 22 22 1.00
200 4 4 177 0.88 43 45 (8,2) 0.96
400 9 4 382 0.95 83 84 (16,2) 0.99
600 14 4 587 0.98 85 109 (16,3) 0.78
800 16 4 669 0.84 147 147 1.00

1,200 16 7 1,094 0.91 187 187 1.00
1,500 16 9 1,366 0.91 232 235 (16,10) 0.99
2,000 16 12 1,742 0.87 242 249 (16,14) 0.97
2,500 16 16 2,187 0.87 287 287 1.00

Figure 5.12: Results of the Jog-Outer-In Token-limited Policy on 16 x 16 Matrix Multiply for
Several Target Token Storage Limits

105



5.2.3 Jog&Jump-Outer-In resource-limited policy

The drop in performance of the Jog-Outer-In policy at moderate resource levels can be at-

tributed to partial-wave effects, as predicted by Observation 4. At TV = 600 the outer loop

is in the two-wave regime. To avoid this, we embellish the Jog-Outer-In policy in a manner

that forsakes the resource efficiency optimization to avoid situations where n/2 < k, < n. If k,

falls in this range, we push it to k, = n and reduce km to compensate. This requires that the

first guess at km is allowed to reach at least four before computing k,, as for the Jog-Outer-In

policy. This Jog&Jurnp-Outer-In Resource-Limited policy is given by:

k = min(Km(r, 2),4)

k' K(rk)

k, = if k' > n/2 then n else k',

The behavior of this policy on our Matrix Multiply example is shown in Figures 5.13

and 5.14. The Token-Limited version is within 5% of optimal in all the test cases. The activation

fraine version shows no improvement, as the two cases where it is suboptimal are influenced by

a bin-packing phenomenon - in decreasing ko by small factor, a comparatively larger increase

in k, is possible. Behavior of the Jog&Jump-Outer-In policy is indicated by x in Figures 5.9

and 5.10.
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A k. I k. ama. Aina./A [Pav, I Opt Pave/Opt

50 2 6 50 1.00 28 28 1.00
100 5 4 85 0.85 44 56 (4,6) 0.79
200 16 2 144 0.72 84 106 (4,6) 0.79
400 16 6 400 1.00 183 183 1.00

600 16 9 592 0.99 232 232 1.00
800 16 12 784 0.98 242 242 1.00

1,000 16 15 976 0.98 254 254 1.00
1,200 16 16 1,040 0.87 287 287 1.00

Figure 5.13: Results of the Jog&Jump-Outer-In Frame-limited Policy on 16x 16 Matrix Multiply
for Several Activation Frame Limits

Sw11 k. k, . W. W./W I Poo Opt I Pave/Opt
50 2 2 56 1.12 12 12 1.00

100 2 4 93 0.93 22 22 1.00
200 4 4 177 0.88 43 45 (8,2) 0.96
400 16 2 379 0.95 84 84 1.00
600 16 3 524 0.87 108 109 (8,7) 0.99
800 16 4 669 0.84 147 147 1.00

1,200 16 7 1,094 0.91 187 187 1.00
1,500 16 9 1,366 0.91 232 235 (16,10) 0.99
2,000 16 12 1,742 0.87 242 249 (16,14) 0.97
2,500 16 16 2,187 0.87 287 287 1.00

Figure 5.14: Results of the Jog&Jump- Outer-In Token-limited Policy on 16 x 16 Matrix Multiply
for Several Token Storage Limits
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5.2.4 Diagonal resource-limited policy

To gauge the quality of these policies, we also compare them with policies that run counter to

our observations. Figures 5.15 and 5.16 show the behavior of a policy which relaxes the two

k-bounds evenly. The performance of this policy is fairly good under tight resource limits, but

falls substantially when the resource limit is loose, because the k-curve enters the plateau in the

upper right quarter. The behavior of this policy is indicated by squares in Figures 5.9 and 5.10.

A .k .m AmazJ. A,ma./A IPo, I Opt j Pave/Opt

50 3 3 39 0.78 20 28 0.71
100 4 6 100 1.00 56 56 1.00
200 7 6 175 0.87 75 106 0.71
400 9 10 369 0.92 145 183 0.79
600 12 12 588 0.98 154 232 0.66
800 14 14 798 1.00 162 242 0.67

1,000 15 16 975 0.98 200 254 0.79
120 16 16 1,040 [ 0.87 287 287 1.00

Figure 5.15: Results of the Diagonal Frame-limited Policy on 16 x 16 Matrix Multiply for
Several Activation Frame Limits

W 11 ko I k. W Wmax W [Pav,, I OptIPave/Opt
50 2 2 56 1.12 12 12 1.00

100 2 4 93 0.93 22 22 1.00
200 4 4 177 0.88 43 45 0.96
400 6 6 367 0.92 74 84 0.88
600 7 8 552 0.92 98 109 0.90
800 9 8 706 0.88 140 147 0.95

1,200 11 11 1,155 0.96 150 187 0.80
1,500 12 12 1,354 0.90 154 235 0.66
2,000 14 14 1,768 0.88 162 249 0.65
2,500 16 16 2,187 0.87 287 287 1.00

Figure 5.16: Results of the Diagonal Token-limited Policy on 16 X 16 Matrix Multiply for Several
Target Token Storage Limits
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5.2.5 Inner-Out resource-limited policy

Finally, we consider a simple policy which favors the inner loop. This corresponds to a k-curve

that starts going to the right and continues upward when the unfolding limit of the inner loop

is reached. This is described by

km = min (k(,2), n) (Compute k, assuming k, = 2)

k,, = mnu(X'(r9 k), n).-

As shown in Figures 5.17 and 5.18, it performs substantially worse than the family of Outer-In

policies on our examples. This is clear in Figures 5.9 and 5.10, as indicated by triangles.

5.3 Variations

For nests of simple loops, a straightforward policy of relaxing loop bounds from the outermost

inward performs quite well. Two optimizations on this policy show enough improvement to

merit the increased complexity. On the other hand, all of the policies considered fall within a

factor of two of optimal over the sample of test points. These results have been demonstrated for

one particular example, but are consistent with the theory developed in Chapter 4 and should

therefore be applicable to nests of simple loops in general. To complete this study, we need to

understand how robust or fragile these policy guidelines are. In this section, we consider several

variations from the simple nested loop scenario. First, we explore another simple nest where

the inner loop has bounded unfolding. Then, we examine a case where there is a non-trivial

recurrence in each of the loops, and yet significant potential unfolding in each. This example

is extracted from the Simple code, discussed previously. Finally, we examine a variant of the

problem studied in detail above, multiplication of lower triangular matrices, where the loop

iteration limits are dynamic.

5.3.1 Another simple loop

We briefly examine a very simple loop nest, where the innermost loop has bounded, yet non-

trivial, useful unfolding. The Id code for our simple relaxation example is shown below. This is

similar to the program discussed in Section 2.3.2, but we have used conditionals to deal with the

boundary conditions in order to remain within a strictly nested loop formulation. Path-length
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A .k° k [I Am,.. Amax/AIPave I Opt Pave/Opt

50 2 6 50 1.00 28 28 1.00
100 2 12 98 0.98 41 56 0.73
200 3 16 195 0.98 69 106 0.65
400 6 16 390 0.98 132 183 0.72
600 9 16 585 0.98 187 232 0.81

800 12 16 780 0.98 192 242 0.79
1,000 15 16 975 0.98 200 254 0.79
1,200 16 16 1,040 0.87 287 287 1.00

Figure 5.17: Results of the Inner-Out Frame-limited Policy on 16 x 16 Matrix Multiply for
Several Activation Frame Limits

SW1 k. Ik.m Wm.. Pz/W{Poe Opt Pave/Opt

50 2 2 56 1.12 12 12 1.00
100 2 4 93 0.93 22 22 1.00
200 2 9 183 0.92 39 45 0.87
400 2 16 309 0.77 52 84 0.62

600 3 16 459 0.76 69 109 0.63

800 5 16 758 0.95 103 147 0.70
1,200 7 16 1,049 0.87 134 187 0.72
1,500 9 16 1,331 0.89 187 235 0.80
2,000 13 16 1,846 0.92 194 249 0.78
2,500 16 16 2,187 0.87 287 287 1.00

Figure 5.18: Results of the Inner-Out Token-limited Policy on 16 x 16 Matrix Multiply for
Several Target Token Storage Limits
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analysis gives I. = 5.0 for the inner loop. Figure 5.19 shows Pave for this example on a 10 x 10

mesh for the entire k-space. Indeed, there is no increase in parallelism for inner loop unfolding

beyond this point (k, = 5). There is little increase in parallelism beyond ki = 3.

defsubst relax-step' I =

{((l1,ul),(12,u2)) = (2D.bounds );

R = I-matrix (2D-bounds A);
{for i <- 11 to ul do

{for j <- 12 to u2 do
il i if i - 11 then i+1 else i-1;

iA - if i - U1 then i-I else i+1;

j1 = if j = 12 then j+i else J-1;
jh - if j - u2 then j-1 else j+1;

R[i,j] = stencil I il i ih jl j jh)}

in R};

10 L6 V d [ 49 48 47 47 46
9 24 31 35 39 38 37 36 35 34

8 24 30 34 37 37 36 35 34 33
7 23 29 33 36 36 35 34 33 32

ko 6 23 91 33 36 35 34 33 33 32
5 H [ 34 34 33 32 31
4 16 21 4 26 26 25 24 24 23
3 13 16 21 21 20 19 19 18
2 ' i j - 16 16 15 15 14

2 3 4 5 6 7 8 9 10
ki

Figure 5.19: Pave over k-Space for Relax-step', 10 x 10, with A,._- Optimal Points Marked
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5.3.2 Non-trivial recurrences

To examine the validity of our nested loop policy guidelines in the context of non-trivial recur-

rences in each loop, we consider a loop nest extracted from the Simple code. At each point in

the mesh a fairly complex expression is evaluated to determine the maximum time-step that

preserves the Courant condition, i.e., keeps the fluid from moving across too many zones. This

is minimized over the entire mesh by computing the minimum of each row as a linear recur-

rence in the inner loop and the minimum of these as a linear recurrence in the outer loop. The

calling tree for this problem, shown below, has a doubly nested loop, with calls to a square root

function in the inner loop.

Cou rantDeltaT[n-2](14) *-O[n-2(6 )Sqrt(1)

tSqrt(l)

Figure 5.20 shows the measured Pave over the entire k-space on a 10 x 10 mesh. As observed

in simpler nests, outer loop unfolding exposes more parallelism than inner loop unfolding. The

maximum activation frame (Amaz) and token (Wmaz) requirements measured under the ideal

model are shown in Figures 5.21 and 5.22, respectively. We see that the resource requirements

favor inner loop unfolding, as observed in the above examples, and the asymmetry in resource

contours is less than that for Pve.

The crucial information from a policy viewpoint is the nature of the optimal k-curve; this

is indicated by boxed entries in Figure 5.20. It strongly suggests outer loop unfolding, with a

slight amount of inner loop unfolding under tight resource constraints, again consistent with the

observations above. Finally, the behavior of the various policies developed above is summarized

in Figure 5.23. All of the Outer-In policies perform quite well, with the otner two policies falling

short in a fashion similar to that in our Matrix Multiply example.
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10 44 60 63 74 76
9 H g 78 82 87 88
8 26 37 40 49 51 53 56 61 62
7 26 37 39 48 50 52 55 59 60
6 25 36 39 48 49 51 54 58 59

k,, 5 25 H 38 g 48 50 53 57 58

4 17 25 27 34 35 36 38 42 42

3 7 P- 34 35 37 40 41
21 17 21 21 22 23 26 26

If 2 3 4 5 6 7 8 9 10
k,

Figure 5.20: Pave for CourantDeltaT on 10 x 10 Mesh over k-Space with Amaz Optimal Points
Marked

10 61 86 110 134 158 181 199 212 217
9 61 86 110 134 158 181 199 212 217
8 55 78 100 121 142 163 180 193 198
7 48 69 89 108 126 144 161 173 177
6 41 59 77 94 110 125 140 151 155
50  5 34 49 64 79 93 106 118 129 132
4 27 39 51 63 75 86 96 105 107
3 20 29 38 47 56 65 73 80 82
2 13 19 25 31 37 43 49 54 55

2 3 4 5 6 7 8 9 10
km.

Figure 5.21: A.az for CorantDeltaT on 10 x 10 Mesh Over k-Space

10 300 404 508 599 688 779 856 905 915
9 297 401 505 596 685 776 853 902 912
8 275 378 468 557 633 708 784 832 842
7 252 341 430 505 580 641 701 748 757

6 221 304 379 453 513 573 619 664 672
ko 5 185 258 327 387 446 491 536 568 575

4 150 208 266 320 365 409 440 470 476
3 117 159 201 244 283 313 343 359 364
2 80 109 136 164 193 217 233 248 250

fl 2 3 4 5 6 7 8 9 10
k..

Figure 5.22: W.a. for CourantDeltaT on 10 x 10 Mesh Over k-Space
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90.

. 80,

0

70-

I I

10 20 40 80 160 240 320

O Outer-In C] Diagonal Activation Frame Limits

+ Jog-Outer-In V Inner-Out

X Jog&Jump-Outer-In

Figure 5.23: % Optimal Pav for Five Activation Frame Limited Policies on CourantDeltaT,

10 x 10
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5.3.3 Dynamic iteration counts

The last variation we explore is one in which the number of iterations is not a simple function

of top level parameters. An extreme case is when the iteration count cannot be determined

even at the time the loop is invoked, as with WHILE loops. Often when such situations arise,

there is also a strong recurrence and the loop has bounded useful unfolding, although detecting

this can be difficult. The Simple code provides two interesting examples of this ilk. There is an

inner loop that performs a table look-up. Path-length analysis gives a very tight bound, so the

complexity of the iteration structure is unimportant. However, this loop is invoked within a loop

that inverts a function of two variables; here, fairly sophisticated dependence analysis is required

to show that, in fact, the outer WHILE loop does not unfold either. There are other important

classes of loops that exhibit substantial unfolding, yet we cannot determine the iteration count

upon loop invocation. List traversal, which is common in sparse matrix routines, is a prime

example. The Outer-In policies we have discussed break down if such a loop appears as the

outer loop, since we cannot determine if the inner loop should unfold. Inner-Out policies break

down in an analogous fashion. The simplest way to avoid these situations is to try and avoid

unfolding loops of this form when possible, i.e., if there is a way of exposing enough parallelism

at reasonable resource requirements without letting such loops unfold, follow that policy. If a

degree of freedom remains after recognizing as many constraints as possible, follow a middle

path.

A simpler situation that arises quite frequently is where the iteration count is determined

by values determined within the program, such as the elimination step of LUP decomposition

on smaller and smaller submatrices. The flexibility of k-bounds handles this case nicely; it only

means that the k-bound determination cannot be lifted out of the loop. As an example, we

consider a somewhat contrived program that multiplies lower triangular matrices. The Id code

is shown below, augmented with determination of loop bounds in terms of a top-level resource

parameter Frames. Ideal parallelism and resource profiles for this are shown in Figure 5.24

for 50 frames. The behavior is quite good until the iteration counts get too small to generate

significant parallel activity.
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DEF LIP A B i j = {sum = 0
in {FOR k <- j to i bound 2 do

next sum = sum + A[i,k]*Btk,j];
FINALLY sum));

DEF LMr A B n Frames =
{C = Imatrix ((1.n),(tn))

k = (max 2 (min n (floor (Frames / 7)))); % compute ki assuming k2 - 2
{for i <- 1 to n bound ki do

k2 = (max 2 (mnn i (Frames - k1) / (3skl))); % compute k2 given ki

{for j <- 1 to i bound k2 do
C[i.j) - lip A V i j}

in C);

50.

ALU operations

40-

30-

. 200

10_

100 200 300 400 500 600 700 800 900 1,000 t

50_

Frames
40-

30

0
cn 20-

10-

01

100 200 300 400 500 600 700 800 900 1,000 t

Figure 5.24: Ideal Parallelism and Resource Profiles for LMMr, n 16 and Frames = 50
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5.4 Conclusions

For simple nests of loops, in the absence of structure allocation or strong scalar recurrences in

the outer loops, simple policies favoring outer loop unfolding perform quite well. The policy of

choice is primarily Outer-In, with the "Jog&Jump" optimization introducing a small amount of

inner loop unfolding when resource constraints are tight. Thus, our Matrix Multiply program

should be augmented with resource management code to assign loop bounds as shown underlined

below.

DEF MatrixMult' A B n s m frames -

{k = floor ((frames - 1) / 17);
ko - if (ki > n/2) then n elseo (max 2 ki);
km - max 2 (((frames/ko) - I) / 4);
in {matrix ((1.n),(1.m)) I [i,j] = ip I B s i j

II i <- 1 to n bound ko

j <- I to m bound km}l;

The quality of this policy has been demonstrated on a few small examples and is consistent

with our model of loop behavior. It represents a compromise between fill-and-flush overhead,

resources, and bin-packing anomalies. In the examples studied here the initiation rates for the

two loop levels are equal, although in CourantDeltaT both the index variable and the minimum

value are circulated. Expression (5.2) gives a measure for how strong the outer loop dependence

(i1 ) would have to be relative to that of the inner loop (i2 ) before the fill-and-flush penalty of the

outer loop would dominate. Although the cross-over point can be worked out in detail, the short

answer is "very strong." Generally, where there is such a strong dependence from one iteration

to the next, there is little useful unfolding, as well. The role of detailed dependence-analysis in

this paradigm is determining where the simple Outer-In policies break down.

117



118



Chapter 6

Controlling Loops with Structure
Recurrences

In this chapter we extend our study of nested loops to deal with the interaction of two resource

constraints: token storage and I-structure storage. We look at a nest of loops where a data

structure is allocated in each iteration of the outer loop and used by a small window of iterations.

The most common construct of this form is where the outer loop is a linear recurrence over

a large data structure. More traditional methods of exposing parallelism would not attempt

to uncover the parallelism available in a loop of this form, but dynamic dataflow does so

automatically. Under resource-limited execution, this gives rise to interesting trade-offs. For

example, it is possible to constrain the computation for each version of the data structure and

allow more versions, or to relax the computation on each version and restrict the number of

versions. We explore two situations, one in which the combined token and structure requirement

is limited and one in which the two resources have independent constraints. In both cases, we

find that inner loop unfolding is clearly superior to outer loop unfolding, in stark contrast to the

class of loop nests studied in the previous chapter. This leads to a simple classification scheme

for loops: those with limited useful unfolding, those that have expensive unfolding, and, finally,

those that are good candidates for unfolding.

6.1 Salient Features

In re-examining the salient features of loop nests in this new context, we see that the observa-

tions of the previous chapter that motivated a class of Outer-In policies no long-r hold. With
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simple loop nests we found that maximizing parallelism and minimizing resources pulled in

opposite directions, so all intermediate choices were fairly good and the best choice was deter-

mined by the strongest pull in a given region. In this new context, we find that both concerns

pull strongly in the direction of inner loop unfolding.

6.1.1 Parallelism

A loop that allocates large arrays of known lifetime in each iteration will usually involve a

recurrence on the arrays. In dealing with simple loops, we operated under the assumption that

loops other than the innermost were in the useful unfolding regime, i.e., n < Yi. However,

the presence of the recurrence in the outer loop may violate this assumption. Hence, the

fill-and-flush argument of the previous chapter may not hold. Although the loop may unfold

completely, allocating many versions of the data structure, it may have limited useful unfolding.

Deternining the presence of this outer loop recurrence is not too difficult in most cases, although

translating the strength of this recurrence into a limit on natural unfolding, y, is difficult. Simple

path-length analysis of the loop body is not sufficient. We would need to determine the length

of the element-wise dependencies from one version of the structure to the next and compare that

with the rate that the inner loops sweep through a single version of the structure. Fortunately,

resource limitations will usually place a fairly tight constraint on such loops, so our inability to

perform this analysis is not too serious.

6.1.2 Resource requirements

The allocation of a structure in each per outer loop iteration changes the resource behavior of

these loops dramatically. There are now two resources placing constraints on loop unfolding.

Suppose we have local storage capacity T and structure storage capacity S, i.e., we are working

with an architecture with distinct memory spaces for the two forms of storage. For a nested

pair of loops, we need to optimize for k,, ki under the constraint

T(k0 , kj) < T and

S(ko, k <) S,

where the resource expressions T(ko, ki) and S(ko, ki) are given by

T(ko, ki) = tI + t 2 ko + t 3 koki and
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S(k., ki) = s1 + s2ko.

Like the loops studied in the previous chapter, the local storage contours (token or activation

frame) are hyperbolas, as shown in Figure 6.1. They are slightly asymmetric, weakly favoring

inner loop unfolding for a given product koki. The structure storage expression is independent

of ki, so the corresponding contours are horizontal. Thus, structure constraint S serves to place

an upper limit on ko, but places no constraint on ki.
Token Storage Contour

10 /Structure Storage Contour

90_ -

70- .

60-

50-

40-_

30-

I I I I I I I I

2 10 20 30 40 50 60 70 80 90 100 k

Figure 6.1: Typical Independent Token and Structure Storage Contours

The alternative approach, which may be attractive for machines with a single storage pool,

is to consider a single constraint r on the combined storage usage:

R(ko, ki) < r, where

R(ko, ki) = (tl + SI) + (t 2 + s 2 )ko + t3 koki

The large outer loop term gives rise to highly asymmetric resource contours, as shown in
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Figure 6.2. In contrast to the previous chapter, here the linear term is very significant and

can dominate. Thus, resource concerns lend a strong bias toward inner loop unfolding. Both

parallelism and resource concerns suggest that outer loop unfolding should be minimized in the

presence of outer loop structure recurrences.

Resource contours for R 10OKo + KoKi
100

80O

70-

60-

0-

40-

30-

10 --- --

I I I I I I I I I

2 10 20 30 40 50 60 70 80 90 100 Ki

Figure 6.2: Typical Combined Token and Structure Storage Contours

6.2 An Example: Successive Relaxation

To study the behavior of nested loops with structure recurrences, we examine a program which

performs successive relaxations of a mesh using the relax-step' function discussed in the pre-

vious chapter. (Structures can be recycled in the outer loop, as discussed in Chapter 3, however,

we have not done so, in order to control the experiment. Recycling structures introduces an

additional loop to clear the structure before it is reused, causing the topology to fall outside the
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16 80 112 147 165 188 214 251 253 258 302 305 308 311 317 457
15 80 112 147 165 188 214 251 253 258 302 305 308 311 317 457
14 80 112 147 165 188 214 251 253 258 302 304 307 310 314 450
13 76 112 133 163 188 211 215 253 258 294 297 299 302 305 433
12 75 103 132 161 183 207 211 245 258 287 289 292 295 298 422
11 71 102 130 159 180 204 207 239 258 280 283 285 287 290 407
10 71 101 129 143 177 200 203 234 239 275 278 280 282 285 397
9 67 94 118 142 158 178 199 205 234 269 271 274 276 278 385
8 67 93 117 140 156 175 197 201 229 233 267 2t9 271 274 376
7 55 75 102 111 143 145 177 197 202 204 205 207 209 212 305
6 51 71 89 109 129 141 144 175 195 197 198 200 202 204 290
5 43 57 83 84 109 110 140 153 154 156 157 159 160 163 236
4 39 54 70 82 99 107 116 136 148 150 151 152 154 156 222
3 29 38 55 56 72 73 97 102 103 104 105 106 107 109 158
2 21 28 40 42 54 55 72 76 77 78 78 79 80 81 117

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
k,

Figure 6.3: P,,, Throughout the k-Space for Relax 16 Steps on 16 x 16 Mesh

perfectly nested loop formulations we are considering so far.) The calling tree for this example

is shown below. Note, that this version of the relaxation program uses conditionals, rather than

separate loops, to handle boundary conditions, so it has a strict nested loop structure.

relax[STEPS.?](14 --- elax-step'[n,?](6) *-0[n.5](2)

Although the natural unfolding for the innermost loop is 5, in the following we have chosen

to set it at 2 and explore only the effects of the outer and middle loop bounds. (The additional

parallelism available by allowing the innermost loop to unfold further is small, as indicated by

Figure 5.19, above.) In this example, the structure storage coefficient, s 2 , is n 2 , while t 3 is a

small constant. Thus, even a small amount of outer-loop unfolding causes a large increase in

the overall resource requirement. The average parallelism over the k-space for this program

is shown in Figure 6.3. Observe that for large values of k, there is almost no improvement

in Pa,,e. It appears here that po is less than 16, due to the structure recurrence. There is no

change in the top two rows. Generally, more parallelism is exposed by allowing the middle loop

to unfold, rather than the outer loop. This is in direct opposition with the behavior observed

for the simple loops studied in the previous chapter.
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16 80 112 147 165 188 214 251 253 258 302 305 308 311 317 457

15 80 112 147 165 188 214 251 253 258 302 305 308 311 317 5

14 80 112 147 165 188 214 251 253 258 302 304 307 310 314 5

13 76 112 133 163 188 211 215 253 258 294 297 299 302 305 3

12 75 103 132 161 183 207 211 245 258 287 289 292 295 298 2
11 71 102 130 159 180 204 207 239 258 280 283 285 287 290 0

10 71 101 129 143 177 200 203 234 239 275 278 280 282 285 9
9 67 94 118 142 158 178 199 205 234 269 271 274 276 278 8
8 67 93 117 140 156 175 197 201 Ej 233 F6 269 271 274 7
7 55 75 102 111 143 145 177 .9 202 204 205 207 209 212 0

6 51 71 89 109 129 141 144 7 Ej 197 198 200 202 204 X
5 43 57 83 84 109 110 140 5 154 156 157 159 160 1633

4 39 54 70 82 9 9 116 3 [ 151 152 154 156
3 ' 38 5 56 72 73 97 0 103 104 105 106 107 109 5

2 [ 281 140 4-2 5 ,,55 72 76 [7 [] 78 79 80 81 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k"'

Figure 6.4: TV,a_ Optimal Points over the k-Space for Relax, Shown Overlaying Pave Values

6.3 Local-Storage Limited Policies

To contrast the behavior of various policies in the context of structure recurrences with that

observed in the previous chapter, we first consider only local storage, ignoring structure storage,

as we did there. Later, we consider the additional impact of the structure storage constraint.

The Wmz optimal k-configurations for this program are shown as boxed entries in Fig-

ure 6.4. Observe, that all of these fall into the region ko < k,. Thus, we can expect the

Outer-In policies to perform poorly. Fitting the measured token storage in Figure 6.5 to our

general resource expression we get

T(ko, kin) 20 + 7ko + 16.5kokm.

This fits well for small bounds, but over estimates the token storage by 50% at the point of

maximum unfolding. We will use this resource expression in implementing our resource-limited

policies.

Figure 6.6 shows a summary of the performance of our five policies under various waiting

token limits on Relax (16 x 16 for 16 steps). The three outer loop oriented policies (indicated

by C), +, and x) perform poorly, even ignoring structure storage usage, because of lack of

useful unfolding in the outer loop. The Diagonal (squares) and Inner-Out (triangles) policies,
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16 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.1 2.1 2.2 2.3 2.4 2.6 2.8
15 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 1.9 2.0 2.1 2.3 2.4 2.5 2.7
14 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.7 1.8 1.9 2.0 2.2 2.3 2.5 2.7
13 0.5 0.7 0.8 1.0 1.2 1.3 1.5 1.6 1.7 1.8 2.0 2.1 2.3 2.4 2.6
12 0.5 0.6 0.8 0.9 1.1 1.2 1.4 1.5 1.6 1.7 1.9 2.0 2.1 2.3 2.5
11 0.4 0.6 0.7 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.2 2.4
10 0.4 0.5 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.0 2.2

9 0.4 0.5 0.6 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.1
8 0.3 0.4 0.5 0.7 0.8 0.9 1,0 1.1 1.1 1.3 1.4 1.5 1.6 1.7 1.9
7 0.3 0.4 0.5 0.6 0.7 0.8 0,9 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
6 0.3 0.4 0.4 0.5 0.6 0.7 0,8 0.8 0.9 1.0 1.1 1.1 1.2 1.3 1.4
5 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2
4 0.2 0.2 0.3 0.4 0.4 0.4 0,5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.0
3 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7
2 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k-

Figure 6.5: Wma/1000 for Relax 16 steps on 16 x 16 Mesh

perform substantially better than the Outer-In family, and the shortfall at larger resource levels

can be attributed to overestimating the token requirement. Referring to Figure 6.4, one can

expect that a Jog&Jump-Inner-Out policy, i.e., a slight bias toward outer loop unfolding under

moderate resource levels, should perform quite well.
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Figure 6.6: % Optimal P.. for Five Waiting Token Limited Policies on Relax 16 x 16 for 16

steps
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I w 1 k. I km I Wmoz [ wmaz/wl[ Pa opt P..e/Opt
100 2 2 100 1.00 21 21 1.00
150 3 2 142 0.95 29 29 1.00
300 4 3 243 0.81 54 76 0.71
500 4 6 395 0.79 99 117 0.85

1,000 4 14 848 0.85 154 222 0.69
1,500 4 16 956 0.64 222 290 0.77

Figure 6.7: Outer-In Token-Limited Policy with 4 Structures

W 1 ko I km Wm.z W,.z/WI P., Opt P.,,/Opt

100 2 2 100 1.00 21 21 1.00
150 2 3 142 0.95 28 29 0.97
300 3 5 281 0.94 56 76 0.74
500 4 6 395 0.79 99 117 0.85

1,000 4 14 848 0.85 154 222 0.69
1,500 4 16 956 0.64 222 290 0.77

Figure 6.8: Jog-Outer-In Token-Limited Policy with 4 Structures

W .kok,, W,.a. I Wma/W [ Pave Opt fave/OPt
100 2 2 100 1.00 21 21 1.00
150 2 3 142 0.95 28 29 0.97
300 2 8 278 0.93 72 76 0.95
500 2 14 441 0.88 80 117 0.68

1,000 3 16 720 0.72 158 222 0.71
1,500 4 16 956 0.64 222 290 0.77

Figure 6.9: Inner-Out Token-Limited Policy with 4 Structures

6.4 Separate Structure and Token Storage Constraints

We have considered the effects of the structure recurrence only in so far as it changes the paral-

lelism contours, ignoring structure storage resources. A structure storage constraint, separate

from the constraint on token storage, places a hard limit on k0 . Thus, the effect of such an

approach can be seen by simply limiting the maximum unfolding of the outer loop. This has

the collateral effect of pruning the region of the k-space in a way that avoids the excessive un-

folding of the outer loop. As a result, all of the policies perform better relative to the optimal

k-configuration, as can seen in Figures 6.7, 6.8, and 6.( .
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16 80 112 147 165 188 214 251 253 258 39) 305 308 311 317 457
15 80 112 147 165 188 214 251 253 258 302 305 308 311 317 5
14 80 112 147 165 188 214 251 253 258 302 304 307 310 314 5
13 76 112 133 163 188 211 215 253 258 294 297 299 302 305 3
12 75 103 132 161 183 207 211 245 258 287 289 292 295 298 2
11 71 102 130 159 180 204 207 239 258 280 283 285 287 290 0
10 71 101 129 143 177 200 203 234 239 275 278 280 282 285 9
9 67 94 118 142 158 178 199 205 234 269 271 274 276 278 8
8 67 93 117 140 156 175 197 201 229 233 267 269 271 274 7
7 55 75 102 111 143 145 177 197 202 204 205 207 209 212 0
6 51 71 89 109 129 141 144 175 195 197 198 200 202 204 9
5 43 57 83 84 109 110 140 153 154 156 157 159 160 163 3
4 39 54 70 82 99 107 116 136 148 150 151 152 154 156 2
3 29 38 55 56 72 73 97 102 103 104 105 106 107 109 5

2 [ii R8 o 421 F14 jF55 L7211 17F71 ['8 78 [71 801 [M8 1
112 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k'

Figure 6.10: Optimal Points in k-Space Under Combined Storage Metric

6.5 Combined-Storage Limited Policies

If structure storage and local storage are drawn from the same pool, it makes sense to consider

the combined storage usage. This raises the interesting possibility that parallelism may be

iniproved by trading a version of the data structure for more local token storage, or vice-versa.

The combined resource usage for a ko, km configuration of an n x n Relax can be approximated

by

R(ko, kin) = 20 + (7 + n')ko + 16.5kokm.

The optimal k-configurations under this resource expression are shown by boxed entries in

Figure 6.10. The best policy in this case clearly is Inner-Out. The behavior of four policies is

shown in Figure 6.11. Here the family of Outer-In policies performs very poorly, and Inner-Out

is perfect! Reducing the amount of local storage to allow for more versions of the structure is

seldom advantageous. However, a non-trivial amount of parallelism can be obtained from outer

loop unfolding, if there is sufficient resource availability.
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Figure 6.11: % Optimal P,,, for Five Combined Storage Limited Policies on Relax 16 x 16

for 16 steps
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6.6 Variations

To test further the guidelines developed above, we consider a variation involving dynamic loop

bounds. The example we consider is LU decomposition, without pivoting. The Id code is

shown below. Like the previous example, there is a structure recurrence in the outer loop, but

in addition the iteration counts of the other loops decrease with the outer loop index.

def LU I n =
{D = i-matrix ((1,n),(1,n));
{for k <- 1 to n-1 do

{for j <- k to n do % copy pivot row (U)
D[k.j] = 1(kjj;

{for i <- k+l to n do % multipliers (L)
D[i,k] = a[i,k)/a[k,k]);

next I I-matrix ((k+l,n),(k+1,n)); % eliminate

{for i <- k+1 to n do

{for j <- k+1 to n do
next 1[i,j] = A[i,j] - D[kj]*D[i,k])}

finally {d[n,nJ=a(P,n}} ;
in d);

The calling tree for this program is shown below. It shows the branching within the outer

loop apparent from the Id code. Technically, this falls outside the strict nested loop formula-

tion, but the three innermost loops have bounded unfolding, as determined by the path-length

analysis outlined in Chapter 4. Ignoring these, we are left with a strict loop nest.

LU [N- 1,](22L--0[?,21(2)
_*- 1 [7,7(5) -*- 1-0[?,2](2)

-*-2[?,2](2)

The experiment we conduct is to bound the three innermost loops to 2 and study the effects

of the two remaining k-bound parameters - the outermost loop and the middle loop. The

results of this study are presented in Figure 6.12, which shows Pave over the remaining k-space

for a 15 x 15 matrix. To draw a comparison with the results in the previous chapter, we consider

only local storage, in this case activation frames. Ama. optimal points are indicated by boxes.

11, re the Inner-Out policy is difficult to implement, since the iteration count of the niddle loop

depends upon the outer loop index. If the average iteration count were treated as the maximum

,infolding, i.e., km< 8, such a policy would do well, but so would a diagonal policy.
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15 33 42 49 56 59 63 64 64 64 64 64 64 64 64
14 33 42 49 56 59 63 64 64 64 64 64 64 64 64
13 33 42 49 56 59 63 64 64 64 64 64 64 64 64
12 33 42 49 56 59 63 64 64 64 64 64 64 64 64
11 33 42 49 56 59 63 64 64 64 64 64 64 4
10 33 42 49 56 59 63 63 64 64 64 64 64 U4 64

9 31 40 48 H 56 63 64 64 64 64 64 64 64

8 29 38 45 53 53 62 63 6464646464

7 27 36 43 50 51 60 60 61 61 62 A4 54

6 26 34 41 7 48 5 55 56 57 57 T. ' -8 62 62

5 23 31 35 3 44 53 54 54 54 55 59 59

4 20 26 46 48 49 49 50 52 52

3 16 22 6 06 38 38 39 41 41 41 43 43

[ 26 P 28 29 29 30 30 31 31

2 3 4 5 6 7 8 9 10 11 12 13 14 15
k-

Figure 6.12: P,e for LU decomposition on 15 x 15 Matrix with A,,,, Optimal Points Marked

6.7 Conclusions

In the presence of an outer loop recurrence on a structure, Outer-In policies generally perform

worse than Inner-Out policies, although independent I-structure constraints may keep outer

loop unfolding small enough that Outer-In policies still perform reasonably well. This stands

in contrast to the kind of nest examined in the previous chapter, where the nest possessed only

very weak recurrences. These results suggest a simple loop classification scheme:

1. Limited Useful Unfolding (LUU): Small innermost loops, loops with very strong

recurrences, and loops with small constant iteration counts will have limited useful un-

folding, regardless of problem size or resource availability. They can largely be ignored

from a policy viewpoint. Path-length analysis on the loop graph will detect the first

group, i.e., c is small. Identifying loops of the second group requires more substantial

dependence analysis, possibly including subscript analysis and inter-procedural strictness

analysis. The goal is basically to show that i z c. The last group often can be detected

through symbolic analysis of loop initial, step, and final expressions.

2. Unfold if Necessary (UNIN): Loops with large resource coefficients, such as the outer

loop of Relax, may offer parallelism when allowed to unfold, but at a large resource

investment. If parallelism can be exposed elsewhere, it should be. To place a loop into
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this category involves determining where resources are allocated and is strongly related to

determining the lifetime of data structures. In many cases a loop that properly belongs

in the first category, but is not identified as such because the dependencies are hard to

trace, will often be placed in this category. However, the weaker categorization is usually

sufficient to arrive at a reasonable policy.

3. Unfold if Possible (UIP): Loops like the outer loop in Matrix Multiply that offer

ample unfolding with relatively modest resource investment. In the absence of further

information, we assume a loop is of this form.

Our Relax example offers an interesting illustration of these categories. The innermost loop

falls in the first category, with maximum unfolding (in the absence of latency) o. 5. Resource

analysis places the outermost loop in the second category; it is possible that it belongs in the

first, but, fortunately, it is enough to mark it as unattractive. The middle loop falls in the last

category.

One can construct loops that have a fairly strong recurrence from one iteration to the next

(large i) that does not involve the bulk of the computation in the body, so that i is independent

of c. This would not fall well into any of our categories, and detailed analysis is required to

deternine which loop actually admits more parallelism. However, this sort of situation is fairly

rare in practice, and the net difference between the policy alternatives is small. It appears that

the b,.ik of loops encountered in practice fall well into one category or another, the caveat being

the deep dependencies mettioned above.
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Chapter 7

Controlling Adjacent Loops

The nested loops studied in the previous chapters represent a special kind of branching in the

execution tree, where the branch factor is dynamically determined - the k-bound. The policy

for choosing k-bounds dictates the shape of the subtree rooted at the outer loop, such that the

total resource requirement of the nest does not exceed some value. The other kind of execution

tree branching arises from multiple invocations within a code-block or iteration. In general,

we cannot order such invocations, but must let them proceed in parallel. In this case, the

branching factor is static, and the k-bound assignment for loops in the two branches dictate

how resources are partitioned at the branch. Thus, the primary issue is to decide how a given

amount of resources are to be divided between the branches; once the division is determined, we

can apply the policy guideines recursively in each branch. What makes this decision difficult is

the potential variation in the relationships of adjacent loops, i.e., loops appearing on different

branches of the calling tree.

In this chapter, we explore these various relationships in some detail and argue for a general

approach of proportional allocation. Based on this idea and the theory developed in Chapter

4, a policy of threshold splitting is formulated. Empirical studies confirm that the optimal

resource division changes as the amount of available resources increases, and that threshold

splitting handles this nicely. This policy is then carried out on several examples.

7.1 Loop Relationships

We begin the study of adjacent loops by examining various potential relationships between

adjacent loop nests. Generally, it is easier to determine the relative sizes of the loop nests than
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their actual interactions. We arrive at a basic notion of proportional allocation: give more to

the larger computation.

7.1.1 Serial loops

The simplest relationship from a policy viewpoint is one in which the branches are completely

serialized, i.e., the computation in one branch must complete before that in the other begins.

All available resources are simply provided to each branch in turn. In general, however, it is not

possible to serialize a pair of loops[86] and, when it is possible, assessing the cost/performance

trade-offs is extremely difficult. Costs include the overhead due to the barrier and the loss

of potential parallelism. What makes this so difficult to assess is that it may depend on the

actual arrival patterns of data, which is a global phenomenon. On the other hand, under

resource-limited execution the performance improvement derived from giving full resources to

each phase, rather than partitioning resources between them, may be significant. Although we

recognize serialization as a potentially interesting line of study, we do not pursue it here. The

SEQ construct in Id provides a means of introducing serialization, and one may assume that a

separate program transformation might introduce SEQ where it is safe and beneficial. We will

take advantage of such serialization where it arises, but not introduce it ourselves.

7.1.2 Independent loops

If two adjacent loop nests are completely independent, the goal of resource splitting is to end

up with essentially equal critical path lengths. Suppose, on the contrary, that we have two

adjacent loop nests with differing ro. Since the critical path of a loop nest is monotonically

non-increasing with increasing resources, allocating more resources to the one with the larger r ,

reduces its critical path at the expense of increasing the critical path of the other. A minimum

is achieved where they are equal. If the loop nests were identical, this would mean giving them

equal resources. Otherwise, we must give more resources to the larger computation, so that it

will complete as fast as the smaller. 1

1 We note that the other possible minimum occurs where one loop is allowed to finish before the other begins,

so each have the full resource capability to work with, as discussed above.
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7.1.3 Producer-consumer loops

Optimal partitioning of resources among producer-consumer relationships is difficult to char-

acterize, because these relationships can be so complex. If we imagine a wavefront of values

flowing from the producer to the consumer, possibly via I-structures, then the goal is essentially

to match the rates of production and consumption. If too little of the resources are given to the

producer, then those allotted to the consumer may be squandered for lack of data to operate

on. If too much is allocated to the producer, the consumer may be unnecessarily constrained

and fail to keep pace. This again suggests proportional allocation.

However, this wavefront model may be inappropriate in many circumstances. For example,

the consumer may require a substantial portion of the intermediate structure before it can make

significant progress, in the worst case rEquiring just the last few values produced. Alternatively,

suppose the complexity of the producer is much smaller than that of the consumer, as might

occur when the producer initializes and the consumer transforms a data structure. Then, for

a short period, the resource load is the sum of the two loop nests, but once the producer

completes, the portion of the resources allocated to it go unused. They cannot be given back

to the consumer within our current scheme.

7.1.4 Cooperative loops

Finally, we must consider cases where pairs of loop nests are mutually recursive - neither can

proceed without the other. In this scenario, constraining either loop will slow the progress of

the other, so resources should be partitioned so that progress is even. There is no guarantee

that this is possible, as the production of shared data may be non-uniform, but one can expect

that the larger computation will require more of the resources.

7.2 Proportional Allocation

The common thread in all these adjacent loop scenarios is the notion of proportional allocation

- we should give more resources to the more complex computation. The question is, What

should be the proportion, and how does this change with the availability of resources, size of

problem, or structure of the computation?

Suppose we have a program with two adjacent doubly nested loops, bounded by kn,k 1 2
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and k 2 l, k 22 , respectively. As argued in Chapter 4, the worst case resource requirements are of

the form

R(kllk 12 ,k 21 ,k 22 ) = k1l(r1l + k12r12 ) + k 21 (r 21 + k 22 r 22 ).

Thus, a given assignment of the k-bounds determines the fraction of the total resources used

by each nest. For example, if the k-bounds for the two nests are similar, the nest with the

larger resource coefficients will use more of the resources. Whereas for nested loops the policy

question is which loop level to favor, for adjacent loops the question is which branch to favor

and how much so. We may expect that the policy will have to be sensitive to the level of

resource availability, as well as program structure. As for nested loops, a given policy must be

translated into a simple rule for computing the k-bounds.

As a first step in formulating a policy for dealing with adjacent loops, we examine the

situations in which the choice of k-bounds is clear, and then we consider ways of handling

the intermediate, less obvious, situations. Suppose resources are sufficiently scarce that all

k-bounds must be set to the minimum value. Then, the resource division at a given branch

point is completely determined by resource requirements of the various subtrees. We estimate

these requirements as follows. Having formed the static invocation tree, work up from the

leaves computing, for each node v, the resource requirement of the subtree rooted at v with all

loops tightly bound, Rmin(v). As discussed in Chapter 4, the requirement for a loop node is

essentially k times the requirement per iteration and for a branch node it is the requirement

of the node plus the sum of the branches. The minimum activation frame requirement of each

subtree is shown in parentheses in the call trees above. Now, consider a branch node v with

children vl,.. . ,v,. The fraction of the resources available at v that are assigned to branch i is

f(i) Rmn( v,)

So, whatever policy we implement for partitioning resources at a branch, it should degrade to

this division when resources are very scarce.

At the other extreme, we may ask what is the optimal fraction when resources are plentiful.

If all the loops are allowed to unfold completely, the resource partition at a given branch point

is deternined by the requirements of the subtrees rooted there. Suppose we compute, for each

node r, Rm,.,(v), the resource requirement for the subtree rooted at t with all k-bounds set to

their maximum value, i.e., the iteration count for the loop. Of course, for most loops this can
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only be determined symbolically and for some loops it cannot be determined at all, but let us

ignore these problems for the moment. For branch node v with children vj,..., v,, the fraction

of the available resources at v that are assigned to branch i is

Rmoz(vi)
3 =:I Rmax (Vj)"

Thus, the fraction of the resources that should be allotted to each branch is clear at some very

tight resource level, Ri, = E Rmin(vj), and at some very plentiful level, RaZ = Rma.(Vj).

The heart of the policy question is what to do between these levels.

Figure 7.1 shows three possible splitting policies, assuming that there are two branches

with significantly different complexity. The horizontal axis is the total resource constraint, r,

running from Rmin to Rma,,. The vertical axis is the amount of resources allocated to a branch.

At r = Rmi,, branch i must receive Rmi,(i), so the fraction of resources assigned to branch 1

is f(1). Ideally, at r = Rma,, branch i should receive Rma 2 (i). A policy will dictate R,(1) and

R,(2) for intermediate resource levels r, under the condition R(1) + R,(2) = r.

The thin lines show the effect of eztrapolating the ratio f(i) -RgjQ) throughout the

resource spectrum. This policy is easy to implement, because we can always compute Ri,

ratios for local storage. However, observe that after a certain point, the smaller branch has

completely unfolded and the additional resources allocated to it go to waste, while the larger

branch is constrained throughout.

A second choice, shown in thick lines, is to interpolate between the values at the resource

extremes. This avoids squandering resources in the manner of the extrapolation rule, but

presents two other difficulties. First and foremost, we may not be able to determine Rma(i)

for some branches. Second, the smaller loop is likely to be in the partial-wave plateau region

throughout most of the spectrum. A small amount of additional resources would allow it to

unfold completely.

The third possibility, shown in dashed lines, is a combination of the other two. The idea is

that the branches representing the smaller computations are likely to be the ones where R a

can be determined, at least symbolically. The Rmin ratio is employed until R,(1) = Rma(1) is

reached for branch 1, the smaller of the branches. From that point on, the resource allocation

for the saturated loop nest is held steady and all remaining resources are assigned to the other

branch. More generally, if we have a number of branches, where R,,a is known for some, but not
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all, the threshold splitting policy first allocates resources to the ones for which Rma is known,

based on Rmi, ratios and by increasing Rma. The remaining resources are divided between the

remaining branches according to their R~in ratios. Often, many of the uninteresting branches

can be dismissed by this simple strategy.

R ma *2 Rma2)

R .( 2)-RMI

R m(1)min
r

R Rmin max

Figure 7.1: Three Possible Splitting Policies

7.3 Experiments with Resource Partitioning

To gain a deeper understanding of the behavior of adjacent loops, we examine several examples.

This study requires a somewhat different empirical method than was employed for studying

nested loops. Here the space of possibilities is large, as it is basically the cross product of

the k-bounds for each of the loops on each branch. The key to focusing our attention on the

interesting part of this space is first to fix the loop-bounding policy for each branch and then

Otudy the behavior of the whole as a function of the resource level, r, and the resource partition,
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f. The assumption here is that the best policy for a loop nest is not strongly affected by the

context in which it appears.

Below, we follow this methodology for several kinds of adjacent loops. We look at two

producer-consumer examples with differing characteristics. The first is based on the Relax

program studied previously; it initializes a matrix as one phase and performs successive relax-

ations as the other. In this example, therc is a natural overlap between the two phases, as

the wavefront produced by one becomes the first wavefront of the other. The second example

initializes a matrix and squares it. Here the overlap between the two phases is harder to pre-

dict, as the consumer accesses the intermediate matrix in two different ways and much of it

has to be defined before the consumer can produce any results. We then examine branching

due to special boundary conditions, and, finally, branching due to heterogeneous computational

phases. In each case, we consider activation frame usage and structure usage separately.

7.3.1 Producer/consumer: initialize and relax

Here we study a producer/consumer pair of loop nests, which initialize and relax a mesh,

respectively. The calling tree is:
TestRelax(21 LInitial Mesh[n,?](6 *-0[n,31(2)

t,-Relax[STEPS,?](14)I--*-O[n,?](6 _ *-O-O[n,5](2)

The initialization portion is a doubly nested loop, where the inner loop has bounded useful

unfolding. The Relax loop is the problem we studied in Chapter 6, and accordingly we adopt

the Inner-Out policy for the middle and outer loops, with the innermost loop bounded to 2.

The augmented program, with code to determine loop bounds from activation frame limits, is

shown below. The augmented form of relax-step simply has two new arguments, the k-bounds

for the two loop levels. At the top-level where code to determine the split should be, we have

introduced an extra parameter, f, so that we can study this policy aspect.
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def TestRelax n steps R =

{frames = R - 1;

init-frames = floor (frames * f);
relax-frames = frames - init-frames;
A = InitialMesh n init-frames;

in Relax A steps relax-frames);

%, Frame limited InitialMesh (Unter Unfolds)

def InitialMesh n frames =
{A = i-matrix ((1.n).(1.n))
{FOR i <- 1 to n bound (max 2 (min n (floor (frames / 3)))) DO

{FOR j <- 1 to n bound 2 DO
A[i,j] = iv i j ni)

in 1};

%( Frame-limited Relax (Inner-out pclicy)

def Relax A steps frames -

{((l1,u1),(12,u2)) = (2Dbounds A);

ki = 2;

km = (max 2 (min (u2 - 12 + 1) (floor ((frames - 2) / 6))));

ko = (max 2 (min steps (floor (frames / (2 * kin)))));

in {for i <- I to steps bound ko do

next A = call relax-step' A km ki;

finally All;

Here the producer (InitialMesh) has the same complexity as a single iteration of the outer

loop of the consumer (Relax). This raises copicern over possibly squandering resources once the

producer ternminates. However, the overlap between the two loop nests is more complete than

one might expect. Figure 7.2 shows parallelism profiles for the two phases and their composition

under complete unfolding. First, we see a bell-shaped curve for initial-mesh, with n = 16.

This has r,, = 206. Above this is the curve for the relax, with steps = n. It has a r = 615.

The uppermost curve shows the profile for the compostion of the two, testrelax. r.. is only

637.

Figure 7.3 shows the behavior of testrelax for 16 steps on a 16 X 16 matrix at several

resources partitions, f (the fraction of resources assigned to initial-mesh), over a range of

activation frame resource levels. Each entry shows Pat,, and below it, in parentheses, the

maximum number of activation frames in use at any point in the ideal execution. The fraction

yielding maximal Pa,, indicated by entries in bold, is near 0.2 at 200 activation frames and

below, but starts falling somewhere beyond this point.

The R,,,,, rule would put f = 6 =1 0.3, slightly higier t han the obsrved optimumn under

tight resource constraints and considerably higher than that observed under looser ones. This

deserves some explanation. The r,,,. ratio is required at .4 21, because this reflects the
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Figure 7.2: Parallelism Profiles for Two Phases of TestRelax and Their Composition

f_=_ o.051 0.11 0.2] 0.31 0.41 0.5

A = 50 51 51 53 43 41 29
(50) (50) (47) (44) (44) (44)

A = 100 69 73 79 78 77 73

(98) (95) (98) (95) (95) (98)
A = 200 122 145 155 118 118 118

(156) (165) (177) (140) (140) (140)

A = 400 257 290 285 234 220 220
(361) (352) (295) (257) (219) (219)

A = 800 421 435 419 396 374 366

(635) (611) (585) (518) (438) (392)
A = 1200 442 442 442 442 435 409

(653) (653) [(653) (653) (611) (553)

Figure 7.3: Pave(Amaz) Versus Fraction Allocated to Smaller Loop Nest for Several Resource
Limits in Relax.
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f j 0.05 .1 oJ 0.21 0.3 0.4 0.5
A 200 122 145 155 158 158 158

(156) (165) (177) (181) (181) (181)

A 400 257 290 300 300 300 300
(361) (352) (343) (343) (343) (343)

A 800 421 442 442 442 442 442

1 (635) (634) (634) (634) (634) (634)

A 1200 442 442 442 442 442 442

(653) (653) (653) (653) (653) (653)

Figure 7.4: P vr(An,,x) Versus Limited Fraction Allocated To Smaller Loop Nest for Several
I6-,iource Limits in Relax.

nuil)er of activation frames required by each branch with all the k-bounds set to the niinimurn

value, 2. Above this resource level, the Rmi, ratio is not necessarily optimal, as it does not

reflect the true size of the two computations. At R - 50 the linear interpolation rule would

give f 0.14; f drops rapidly from there.

At sniall values of r and f there is a second factor influencing the results. The minimum

nnier of activation frames required by the initialization branch is 6. Thus, at R 50 and

f 0.05 we effectively overconmit the resources, since the initialization portion is assigned 2

but uses 6 and the relax branch is assigned 48. The observed maximum activation frame usage

is 50 in this case, so under the ideal model we just got by. This phenomenon represents a defect

in the experimental method and influences only a few entries in the upper-left corner of the

figure. Under tight resource constraints it causes small values of f to appear artificially good.

The maximum usable resource threshold for the initialization portion is 48 frames, with

n. 16. Thus, we can expect that for Af > 48 resources are wasted on this branch. In our

experiment, this plays a significant role for A > 200. To bring the effect of this threshold into

the picture, we change our policy so that no more than 3n activation frames are assigned to the

initialization b)ranch and the remainder is assigned to the other. This has no effect for the first

two rows, but for the other resource levels we get the behavior shown in Figure 7.4. The Rm,,

proportion would assign 30% of the resources to the producer. We see that with the threshold

in effect this is optimal nearly throughout.
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7.3.2 Producer/consumer: initialize and square

In this section, we study another example with two branches representing distinct computational

phases, a doubly-nested producer and a triply-nested consumer, but the relationship between

the two phases is quite different here. Instead of the initial matrix serving as the first wave

of a sequence of transformations, the consumer accesses the initial matrix in complex ways.

Surprisingly, the overlap between the two phases is quite significant, as shown in Figure 7.5.

Here Trc for the producer, consumer, and composition are 211, 298, and 310, respectively.

1,000_

900_

800-

= 700-

600_

© 500-

400-

300- TestMat

200 Composition)

100- rmat MatrixMul

0 ( (Consume

50 100 150 200 250 300 350 t

Figure 7.5: Parallelism Profiles for Two Phases of Testmat and Their Composition

The calling tree for this program is

Testmat(21) -Rmat[N,?l(6 *-0[N,2](2)

t-MatrixMult'[N,?](14) *-O[M,?](6)I---p[S,2](2)

The Matrix Multiply phase is augmented to employ a Jog&Jump-Outer-In Policy as pre-

sented in the conclusion of Chapter 5. The remainder of the augmented program is shown

below.
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fjj 0.11 0.2 [ 0.3 [ 0.41 0.5]

A = 50 20 21 22 16 12
(48) (43) (46) (44) (42)

A = 100 37 42 44 30 30
(94) (86) (95) (90) (98)

A = 200 77 85 86 60 45
(162) (176) (185) (175) (143)

A 400 151 150 150 111 86

(365) (309) (315) (254) (193)

A 800 239 233 229 189 185

(704) (604) (548) (492) (434)

A = 1200 286 249 242 239 233
(945) (858) (760) (710) (604)

A = 1600 289 288 287 249 242
(984) (963) (951) (858) (760)

Figure 7.6: Pu,(Amz) Versus Fraction Allocated to Smaller Loop Nest for Several Resource

Limits in Testmat.

def testmat n R f =

{frames R - 1;

rmat-frames = floor (frames * f);
mm-frames = frames - rmat-frames;
A = rmat n rmatframes;
in MatrixMult' I A n n n mm-frames);

DEF rmat n frames =
{l = matrix ((1,n),(1,n));

{FOR i <- 1 TO n bound (max 2 (floor frames / 3)) DO
{FOR j <- I to n bound 2 DO

Aii,jJ - 1.011;
in Al;

The behavior of this program as a function of A and f is shown in Figure 7.6. In this case,

f 0.3 offers maximal Pa, until resources are relaxed beyond A = 200 point. From A = 400

on. the smallest fraction is best.

Thc threshold policy for the producer is easily incorporated into the resource splitting code

as follows.

def testmat n R f =

{frames = R - 1;

rmatframes = min (3*n) (floor (frames *

mm-frames = frames - rmat-frames;

I = rmatx n rmatframes;

in Natrixult' A A n n n mmnframes);
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fll 0.05[ 0.1 0.2] 0.3[ 0.4]
A= 50 20 20 21 22 16

(48) (48) (43) (46) (44)
A = 100 34 37 42 44 30

(91) (94) (86) (95) (90)

A = 200 62 77 85 85 85
(153) (162) (176) (184) (184)

A = 400 128 151 154 154 154

1 (354) (365) (3C5) (365) (365)
A = 800 230 239 239 239 239

(713) (700) (700) (700) (700)

A =1200 287 287 287 287 287
(941) (941) (941) (941) (941)

A 1600 289 289 289 289 289
11(981) (981) (981) (981) (981)

Figure 7.7: Pave(Amaz) Versus Limited Fraction Allocated to Smaller Loop Nest for Several
Resource Limits in Testmat.

The behavior with this policy is shown in Figure 7.7. In this case, f = 0.3 is optimal

throughout.

7.3.3 Boundary conditions: relax

We now consider a more complex example, where branching arises because of loops that handle

boundary conditions. Rather than explore the range of possible resource partitions, we imple-

nent the threshold policy and inspect its behavior. The program we study is the version of

Relax discussed in Chapter 2, where the boundary conditions are implemented as independent

loops. The calling tree for this is as follows.

RelaxI02[STEPS,?](22 -*-2[U1-L1-1,?](6)F*-2-O[U2-L2-1,41(2)

S*-1[U2-L2-1,4(2)

_--OIU1-1,41(2)

The top-level loop is an Unfold-If-Necessary (UNIN) loop that invokes three subordinate

loops. Two of these, the boundary loops, havep = 4. The third is an Unfold-f-Possible (UIP)

loop, that invokes a subordinate loop with p = 4. The Rmin proportions at the branch are

2/10, 2/10, and 6/10, respectively. However, the two loops with bounded unfolding have a
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small R,,,,a threshold, 2 < A < 4. This is important both for implementing a threshold policy

and for determining the unfolding of the outermost loop. The k-bound for the outermost loop,

k,, is computed by assuming all the loops within it unfold to their maximum useful extent, as

can be seen in the augmented Id program below. This determines the resources available at the

branch point. The k-bounds of the two small loops are computed using the R, proportions

and the useful unfolding "nit. The remainder of the resources are devoted to the interior

loop nest, as dictated by the threshold splitting policy. The k-bound of the middle loop is

computed by assuming the innermost loop has minimum unfolding. Finally, this determines

the resources available to the innermost loop, and hence its unfolding. The top level block,

RelaxIO, is augmented with code to determine the k-bounds, while the loops are augmented

with new arguments, the k-bound for each level.

%%7. Frame-limited relax with inner-out policy and threshold splitting
def Relax102 I steps frames =

{((l1,ul),(12,u2)) = (2D-bounds A);
n = ul - 11 - 1; % iterations for interior
ko = max 2 (min steps (floor (frames / (5*n - 1)))); 7. assume max unfolding within
F = floor (frames / ko) - 1; 7. available frames per iteration
k-sides = max 2 (min 4 (floor (2/10)*F)); .resources to SIDES with threshold
k-top = max 2 (min 4 (floor (2/10)*F)); . resources to TOP with threshold
F2 = F - k-sides - k-top; 7. remaining resources for INTERIOR
k-int = max 2 (min n (floor (F2/3))); 7. k-int assuming min unfolding within
k-int_0 = max 2 (min 4 (floor (F2/k-int) - %)); 7. k-int-0 get what is left
in {for i <- 1 to steps bound ko do

next I = relaxstep I k-sides k-top k-int kint_0;
finally A);

Here we have augmented the program as dictated by the threshold branch policy, with the

loop nest policy developed in previous chapters applied to each branch. We have not tried

to retain the test parameter, f, as it is not clear how to arrive at a meaningful, and yet

relatively small, ;pace of alternatives when multiway branching occurs within a loop. Thus, in

our experimental methodology we take another step back from optimality concerns and try to

establish reasonable "figures of merit" to judge our solution. Recall, our goal is to take a given

co)llection of resources and make the the best possible use of them. Thus, one criterion is that

the pcak resource load should be close to the total available. The second column of Figure 7.8

shows the peak activation frame usage of our augmented! program measured under the ideal

,xccution model at several resource levels. We do not expect that this will equal the total

reource, shown in the first column, since the ideal model may not represent the worst-case
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A Areax Aave 0 Pave

25 21 15.70 3.10 22
50 45 28.86 13.72 48

100 87 50.31 22.56 89
200 166 74.10 35.28 114
300 242 121.37 61.24 117
400 295 168.12 94.58 114
600 430 218.17 143.38 114
800 546 259.78 175.80 117

1,000 546 259.78 175.80 117

Figure 7.8: Behavior of RelaxIO2, 10 steps on a 15 x 15 Mesh, for Several Activation Frame
Limits

execution schedule. Here we see a peak usage of at least 50% of the total available resources in

every case.

A second criterion is that the resource load be fairly even, especially when resources are

tightly constrained. If the load were perfectly uniform, then the mean would be equal to the

maximum, whereas if the resource profile were to have a very large spike, the ratio Aa,,e/Amaz

would tend toward zero. Thus, we will use this ratio as a measure of the smoothness of the

resource load. The third column of Figure 7.8 shows the mean activation frame usage. It is

generally about half the peak usage, although under tight resource constraints it is a little

higher. The fourth column gives the standard deviation, to further characterize the load.

The final criterion is that the exposed parallelism should increase nearly linearly with the

available resources, within the range in which it is possible to make effective use of resources.

Here we see that the increase is quite good up to some point between 100 and 200 frames.

Beyond this there is almost no return on additional resources. Parallelism of order 100 on such

a small problem is quite good, and it is interesting how sharply the impro,-ment falls off.

As a slight variation on this experiment, Figure 7.9 shows the behavior of this program,

where the unfolding of the innermost loops is kept at 2, rather than allowed to reach t = 4. The

effect of this change is quite small. First, consider the two loops that compute the boundary.

Under tight resource constraints these are controlled by the R,,n limits, so it does not matter

what is the maximum unfolding. Under loose constraints, the difference between Rj, and

Rmcix is so small for these loops that the change in resource levels has little effect on either
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A Am xj Aave U Pave

25 21 15.70 3.10 22
50 45 28.86 i3.72 48

100 87 50.31 22.56 89

200 188 96.33 52.35 90
300 272 142.85 85.34 99
400 336 159.52 109.79 90
600 376 190.48 121.97 109
800 376 190.48 121.97 109

1,000 376 190.48 121.97 109

Figure 7.9: Behavior of RelaxIO2, 10 steps on a 15 x 15 Mesh, for Several Activation Frame
Limits With Innermost Loops Tightly Bound

A Amax Aave Pave

25 21 15.71 3.08 22
50 45 28.92 13.69 48

100 87 50.40 22.16 90
200 166 74.35 35.39 114
300 242 121.72 61.37 117

400 242 121.72 61.37 117
600 242 121.72 61.37 117
800 242 121.72 61.37 117

1,000 242 121.72 61.37 117

Figure 7.10: Behavior of Relax-1O2, 10 steps on a 15 x 15 Mesh, for Several Activation Frame
Limits, with Structure Storage Limiting Outer Loop Unfolding to 4.

these or the main loop nest. In the main nest, the middle loop is given priority; thus, the

innermost is only allowed to unroll when resources are plentiful. This is already in the region

where the parallelism curve flattens.

To complete this study, we consider the additional constraints imposed by structure storage.

Since structure allocation is tied to the outer loop, independent structure limits simply place

ani upper bound on k,. The effect of this is shown in Figure 7.10, where k, < 4. Since the outer

loop unfolds only if necessary, this fixes the configuration after a certain resource point.
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7.3.4 Transform and test: simplex

As a final example we consider an implementation of the Simplex algorithm using Bland's

anticycling rule[73]. It exhibits a more complex calling tree, conditionals, and loops where the

iteration count is not a simple function of the problem size. The calling tree is shown below.

Recall, at each loop node the two quantities in brackets represent a symbolic expression for

the iteration count and the maximum useful unfolding, respectively. A question mark indicates

that the corresponding item could not be determined.

-Simplex(45)[-ChoosePivotRow(5)-*-1[?,5](2)
I-0-°?, 1] (2)

- ChooseVaria blToEnter[? ,11(2)

-Simplex[?,?](38) -ChoosePivotRow(5-*-l[?,5](2)
-- -- * -O [ ? , 1 1 ( 2 )

-Pi vot2(11) -*-O0[ UI1- L 1- 1. ](2)
-- --*-1[U2-L2-1,2](2)
-- -*-2(U1- L11](6 L*-2-orU2-L2-1,2](2)

-ChooseVaria blToEnter[?, ](2)

The first branch arises because the initial pivot row and column are determined outside

the loop. Within choose-pivot._row are two loops. Inspection of the program shows that the

first locates the first candidate row and the second finds the best row. While they execute

nearly serially, our compile-time analysis is not powerful enough to discover this. Both have

unknown iteration counts, but limited useful unfolding (LUU), as determined through path-

length analysis. The ChooseVariableToEnter also has LUU, so this side of the top level branch

has activation frame usage that ranges from 7 to 10. The threshold splitting policy takes care

of it nicely and is applied recursively.

The other side of the top level branch is the main loop of the Simplex algorithm. It is

marked as Unfold-If-Necessary (UNIN), because a new matrix is allocated in each iteration.

Within the loop we have tree branches; two are as discussed above and the remaining is the

pivot step. It contains three loops, two have LUU and the last, Pivot2-2, is a nested loop. This

is the one loop in the entire tree marked as a primary target for unfolding. The loop it contains,

the row elimination, also has LUU.
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By applying the threshold splitting rule recursively and allowing the UNIN loop to unfold

only when all other loops are unfolded to the maximum useful extent, attention and resources

are focused on the one loop that really matters - the elimination step of the pivot. With

more sophisticated analysis we could improve the policy only slightly. For example, we could

recognize that the three loops involved in locating the pivot row and column are essentially

serial, but this only allows an additional eight activation frames to be devoted to the main

loop.

7.4 Conclusions

Adjacent loops require that a decision be made as to how resources are split between the

various branches. The potential complexity in the relationships between such loops appears

to be quite troublesome, but a simple policy based on size, rather than relationship, performs

quite well. We can determine the proportion of resources allocated to each branch with certainty

when all the loops are tightly bounded. For a range of fairly tight resource constraints, this

proportion behaves reasonably well. In many cases, it is crucial to determine the maximum

resources that a branch can use, so that additional resources can be diverted to the other, more

complex branches, once the branch is completely unfolded. Otherwise, if the branches represent

computations of roughly equal complexity, we do well by giving them roughly equal resources.
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Chapter 8

A Case Study

In this chapter we draw the developments of the preceding chapters together into a coherent

policy and carry out this policy on a sizable program in order to evaluate its effectiveness "in

the large". The program we -xamine is a hydrodynamics and heat conduction simulation,

known as the Simple Code[25], which has been used as an application benchmark for many

parallel computers. Parallelism and resource profiles for this program appear in Chapter 2.

The calling tree for this program is large, containing roughly 300 nodes. Compile-time analysis

focuses attention on a fairly small collection of loops, representing the primary computational

and resource complexity of the program. Policy guidelines developed previously for handling

branching, structure recurrences, and nesting are shown to perform quite well.

8.1 Policy Overview

In this section we bring together the guidelines developed for handling particular aspects of

program structure. This is presented in terms of the process for augmenting a loop program

with resource management code. We begin with an overview of the kinds of analysis required

and then discuss how the program is augmented with resource management code.

8.1.1 Analysis

Build the Calling Tree:

The backbone for our policy formulation is the call tree, and hence a representation of this

will need to be constructed. This tree is then annotated with various kinds of information.

Note, the requirement that it be possible to construct the calling tree restricts OUR work to
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4 restricted class of programs, as it excludes general recursion. We discuss this restriction

further in the final chapter. Here, we comment on two other subtle aspects of this analysis.

We have scarcely addressed the issue of conditional execution, but where conditionals appear

in other than the leaves of the tree they need to be represented in the tree itself, as they affect

the resource analysis and the parallelism estimates that underlie the policy guidelines. Our

experience with scientific programs expressed in Id suggests that the occurrence of high-level

conditionals is fairly rare, but the set of examples available to date is far too small to make a

strong statement to that effect. Our case study employs conditionals, but well down inside the

tree.

The more subtle issue is the role of higher-order functions. It is possible that the program

has a simple call tree, but constructing it may be difficult as it involves detecting how higher-

order functions are used. Our case study makes extensive use of higher-order functions in the

abstractions it builds, but through a series of compiler optimizations (tuple-elimination, arity

analysis, and in-lining)[85] the "higher-orderness" is compiled away to yield straightforward

loop code[8, 11].

Identify loops with Limited Useful Unfolding:

The next important analysis step is to detect loops with limited useful unfolding. This is

'racial because allowing these loops to unfold beyond this amount squanders resources. Usually

i -nermost loops will have a fairly small useful unfolding and, because they are also deeply nested,

nv resources allotted to them are multiplied manyfold. Using the simple path-length techniques

f Chapter 4, the useful unfolding of innermost loops is easily estimated. That analysis only

takes account of dependencies represented explicitly as arcs in the dataflow graph, so it may

,verestimate the useful unfolding of a loop with a dependence via a data structure. On the

,ther hand, it assumes that communication is instantaneous and that I-fetches are serviced

I nmediately, rather than being deferred. Both of these factors tend to increase the unfolding of

, e loop in practicc, although not necessarily the amount of parallelism. We discuss this issue

f.rther in the next chapter.

More powerful dependence analysis is required to detect other kinds of LUU loops. The

usual subscript analysis techniques[88] can be used to detect dependencies across iterations

through arrays, and techniques similar to Doacross scheduling[281 can be used to translate this

itito useful unfolding. More unusual analysis is required to understand the dynamics of structure
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recurrences. For example, the relaxation program studied in Section 5.3.1 demonstrated limited

unfolding along the structure recurrence, for a given sized mesh. To estimate this we would

need to consider the length of the point-to-point dependence between values in the mesh as

compared to the nunber of steps taken in filling a mesh. Finally, there is an important class

of LUU loops that can only be detected through deep dependence analysis. Basically, we

need to determine that essentially an entire data structure is reduced to a particular scalar

value which is broadcast to essentially all the elements of the next version of the structure, as

pictured in Figure 8.1. Detecting this situation may be possible through analysis similar to

that for static range checking[49, 681. It frequently arises in testing for convergence, as in the

relaxation example shown in Figure 2.9, but may involve dependencies through several data

structures, computed in completely different parts of the program, as in the Simple code. The

experiments presented here suggest that fairly good results can be obtained with almost no

symbolic dependence analysis.

Figure 8.1: Common Scenario with Reduction and Broadcast Causing Limiting Useful Un-
folding

Analysis of iteration counts is important for several reasons. It plays a role in detecting LUU

loops, because through simplifying the start, step, and end expressions we may discover that

the number of iterations is a small constant. This often arises through building abstractions

for regions of a n-dimensional range, e.g., boundary and interior. The progranmer never sees

the loop explicitly and so does not eliminate trivial loops as one would if the program were

expressed in a lower-level progranuning style. More generally, where the iteration count can be

expressed as a simple function of program variables, we have a way of dynamically determining
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the maximum k-bound. We try to lift this point of definition as high in the call-tree as possible,

in order to make the most use of this information in formulating the policy. Iteration counts

are key in determining whether an enclosing UNIN loop should unfold and in determining the

resource threshold at the enclosing branch.

Identify Unfold-only-If-Necessary loops:

The second category of loops we need to recognize are those which may offer arbitrary

unfolding, but have very large resource costs. Usually a loop that contains an allocation of a

large data structure, perhaps several levels down in the calling tree, will fall into this category.

Interestingly, a loop with a structure recurrence that has limited useful unfolding due to a deep

scalar dependence will usually be treated as an UNIN loop if it escapes dependence analysis,

however, this will still allow the loop-bounding policy to perform effectively. The loop will only

be allowed to unfold if resources are plentiful. Loops that are not placed in either of these two

categories will be treated as prime candidqtes for unfolding.

Structure storage analysis

In addition to detecting these structural characteristics, we need to estimate the resource

requirements of subtrees in terms of their k-parameters. This involves analysis of both I-

structure storage and local storage.

Above we discussed detecting allocation patterns for large data structures. To properly

k-bound structure recurrences requires locating the loop in which the recurrence is present and

forming a symbolic expression of the size of the data structure in terms of the free variables

of the loop. Recall, in order to recycle data structur:s as discussed in Chapter 3, the size and

shape of the structure must not change from one iteration to the next. Determining the ofder

of the recurrence is tantamount to detecting the lifetime of the structure variable. Analytical

techniques along these lines are under development at MIIT[89] based on flow analysis[57, 70].

Where the lifetime is defined by a window of iterations of a loop, but the structure changes size

or shape, k-bounding still controls the number of concurrent versions of the structure, although

inore expensive storage management techniques are required. To meet a storage requirement

giiarantee, we need to be able to estimate the maximum size of a version of the structure. It

is rare to have multiple levels of structure recurrences, but it does occur in real applications.

In this case, the structure storage requirement is linear in multiple k-bounds, much like the

expressions for local storage discussed below.
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Local storage analysis

Analysis of local storage essentially involves walking up the calling tree forming a polynomial

in the k-bounds, representing the size of the active portion of the execution tree. If the storage

unit is an activation frame, this calculation is as follows. The requirement of an acyclic code-

block is one larger than the sum of the requirements of its children. For a loop code-block, we

do the same calculation and multiply by the k-bound for the cyclic portion, and then add in the

children in the loop prologue and epilogue. If the storage unit is a token, similar rules apply,

but the coefficient used for a code-block is determined by solving the linear program extracted

from the graph, as in Appendix B.

For both forms of local storage, the algorithm we have described gives the worst-case re-

quirement assuming all code-blocks execute in parallel. This is nearly the case for graphs

compiled from Id, because the activation frame or context may be allocated before any of the

arguments to a code-block are even computed. As we saw in Chapter 2, much of the program

unfolds very rapidly. However, where it is possible to determine that two activations cannot

overlap, the summation is replaced by a maximum. Thus, in general, finding a tight bound

on the maximum resource requirement of a calling tree involves solving a constraint system,

much as for the token storage within a code-block. For a static set of k-bounds this can be

done precisely as for tokens, but solving a symbolic system is tricky. For the kind of structures

that occur in practice, one expects that simple heuristics will suffice. We can start out with

the worst-case expression, assuming all the activations are concurrent, and where we can prove

that subtree A precedes subtree B and the resource expression for one dominates that for the

other, we drop the resource term for the smaller in the summation appearing in a common par-

ent. Conditionals introduce a similar complication, but we can begin by assuming the resource

requirement is the sum of the two arms and improve the estimate through a branch-and-bound

technique.

Even ignoring the issue of improving the estimate by recognizing dependencies, these re-

source expressions can get quite complicated. However, we can implement an effective policy

with a few of simple pieces of information. For each node, we compute the number of frames

required by the subtree rooted at the node with all k-bounds set to their minimum value, usu-

ally 2. This provides the coefficients for the Rmi, ratio policy at the branches. Where possible,

we build a symbolic resource expression for loop nests, where the bound for each loop is the
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maximum useful unfolding, but place a limit on the complexity of the expression, e.g., a linear

expression in a single program variable. This is used for threshold splitting. Also, for simple

loop nests we need to record the resources per unit k for each loop level. Using these resource

coefficients, it is straightforward to generate code to solve for each of the k-bounds one at a

time, as in Chapter 5.

8.1.2 Program augmentation

Having analyzed the program from the leaves of the calling tree up to the root, we augment

it with resource management code working from the root down. To simplify the discussion,

we focus on local storage. At each node we have an Rmin value, possibly an Rm. expression,

possibly an expression for the maximum useful k-bound, and a resource coefficient. At the root

we introduce a new parameter, r, representing the total resources available. At branch points

we introduce code to divide the resources coming down to the branch between the subtrees

at the branch. At loops, we introduce code to solve for k in terms of the incoming resource

parameter. In many nested loops, we will be able to solve for all the k-bounds of the nest at

the level of the outer loop, so the resource management code within the nest simply passes in

the k-bounds. In other cases, we must settle for an Outer-in policy, solving for the k-bound at

each level assuming the inner loops are tightly constrained and passing the available resources

into each loop to solve for the next k-bound. In the next sections we illustrate this approach

on a full-scale example.

8.2 Simple - the Analysis Phase

The program we examine is the Simple Code, which simulates the behavior of fluid in a sphere

using a Lagrangian formulation. To simplify the problem, only a semi-circular cross-sectional

area is considered. The program does not vectorize easily, due to extensive table lookups inside

key inner loops. The particular version we use was developed to demonstrate the virtues of

programLing scientific applications at a very abstract level, using higher-order functions and

I-structures[1l1. A declarative style is adopted, in which node or zone formulae are applied

to generalized coordinate functions over finite ranges. The resulting program directly reflects

the equations describing the physics of the problem. This is quite far from the versions of
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this program studied elsewhere[65, 78], which employ a very low-level programming method-

ology. Through some powerful compilation techniques a fairly efficient executable program is

produced[Ill. However, the final program is a huge complex of nested loops, with little corre-

lation to the original text. The resource behavior of the unconstrained program is terrible, as

can be seen in Figure 2.11 of Chapter 2. Below, we go through the steps involved in analyzing

this program and augmenting it to produce a well-behaved bounded-loop program. Finally, we

show how well it performs.

The first step in our analysis is to construct the calling tree. The complete tree is shown

below. It contains a total of 292 nodes, including 257 loops, with a maximum loop nesting of

six. Thus, finding an optimal assignment of the k-bounds is out of the question. The call tree

exhibits a host of different constructs: branching, nesting, structure recurrences, reductions,

conditionals, and while loops. Where a loop has code-block invocations both within the body

of the loop and outside of the body, it is represented as a pair of nodes at the same level in

the tree with the body indicated by an ampersand. Rather than perform detailed analysis of

conditionals, we have adopted a conservative approach and charged for both branches. The

primary effect of this is that resources are allocated for the Region loop within Poly, even

though it is enclosed in a conditional. Conditionals appear within expressions elsewhere in the

program, but do not effect activation frame estimates.
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Secondly, we have performed loop iteration count analysis by propagating the start, end,

and step expressions of FOR loops backward through the graph, building a symbolic expression

for the iteration count at the highest possible point in the tree. We then simplify the expression

to put it in canonical form. In this program this analysis is very successful, picking up simple

lincar expressions for all the FOR loops. The loops where no iteration count is determined

are indicated by "?", e.g., InvPoly and Region. These are, indeed, WHILE loops. Region

performs a table lookup and InvPoly uses this function repeatedly to invert a piecewise linear

function. Many of the FOR loops execute a small, fixed number of iterations. This arises as

a result of the abstract*- a for applying a collection of functions to rectangular regions of a

2-dimensional range. In many cases the range is just a vector or a point. The other source of

iiiall, fixed iteration count loops is the abstraction for evaluating polynomials based on a table

of coefficients.

Thirdly, we have performed simple loop unfolding analysis on innermost loops containing no

uivocations. This is straightforward 1 ath-length analysis. No subscript analysis is performed,

so we may overestimate certain loops - two pairs of loops inside of FinalTemp implement a

forward and back solver with such recurrences. ,' :.-ere applicable, the results of this analysis

appear as the second expression in square brackets, otherwise a "?" appears. This analysis

ide,,ntifies one of the loops with unknown iteraton count, Region, as having limited useful

Ilufolding. The other WHILE loop, InvPoly, also has limited unfolding, but interprocedural

,f)pvndeice analysis is required to identify it.

Froin the viewpoint of loop bounding policy, w, can essentially ignore these loops with

111 ltv, l-eful uinfoldinm as they enter primarily in the resource splitting phase. In this program,

'1,' ',,p, witi Ioiindfed nait iral unfolding have p - 5, so for the purposes of this s tud.; we will

: ,u at 2 and c,,nsi, ,.r them as we do acyclic blocks. This affects the experiment only at

: .ll lilfi r>,,,mrc, ltvs. Each of these two arialysis ecliniqules in isolation reduces the size of

, '.' d,, to deal withI to 143 omles. or rougblv in half. AppI:>.t together. ic., eliminating

.... ltV 1." 1 that cqntain only li1'i" nodes, tli tree is reduced to 75 nodles.
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8.3 Program Augmentation Phase

The first-order policy decision is identifying the outrmost loop as Unfold-Only-If-Necessary

(UNIN). This is straightforward because the structure resource expression is 25n 2kimpe. All

the structure allocations are per outer loop iteration, although they appear nested somewhat in

the tree. This program can be put in the form discussed in Chapter 3 by lifting these allocations.

There is actually a scalar dependence that limits the unfolding of the outer loop to 2, but this

is a very deep dependence and very powerful analysis techniques would be required to detect

it.

Having reached this decision, the policy for the loop nests containing only one level of

interesting unfolding is clear: simply divide by Rj, to get the k-bound, once resources are

split at the top level. The threshold for resource splitting takes effect at the point indicated by

the iteration count analysis. Having eliminated these "single level" loops from consideration,

the tree we need to examine more carefully is much smaller, as shown below:

simpl.2(2165 In-itiMesh(24+) -- [..](, -. 01-16

-. 20 [a](58) -'.20.0[.](28)

0 Simple2[ITERS](1906) - 0n-2](l+ 0)f .0.0[a.2](4)

E an Tenm pP res( 487 --. 2)( 46 2 )--. .O[.-2)(230 )fIPvP,[?](44)
I--1.,Poly[?](44)

Tim.Stp(3 -*.2[..3]( 3+--.2.O[n.3](6)

More sophisticated analysis could take us a bit farther and simplify this nest in two ways.

Path-length analysis across acyclic code-blocks in innermost loops would place a limit on the

TimeStep branch, as the inner loop only includes calls to SQRT. Scalar dependence analysis

across loops would show that the InvPoly nodes have bounded unfolding as well. Thus, we

can see that compile-time analysis focuses our attention on the portion of the program that is

essential, weeding out most of the insignificant structure. In the study that follows, we fix the

unfolding of InvPoly at 2, but do not consider path analysis across code-block boundaries.

To see the effect of our policy, we have carried through the program augmentation process

by hand. At each branch in the tree we group the children into classes corresponding to the

number of interesting loop levels, i.e., levels where unfolding can occur. The 0-level branches

have a fixed resource requirenwnt; all the loops appearinig in these branches have a k-bound

of 2. The 1-level loops require no policy to control and have a simple resource threshold. For
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mo-e complex loops, a simple Outer-In policy is followed. The branches of the static invocation

tree si-,,wn above are ordered so that at a given branch level the loops increase in complexity

(town the page.

The implementation of the policy goes a3 follows. If a total of A activation frames are

allotted to the entire program, 14 frames are directed to InitConst, 245A/(2165 - 14) frames

are directed to the InitMesh branch, and the rest are given to the top-level loop. Within

LidtMesh there are 10 loops, actually these are dcubly-nested loops with no useful unfolding.

These are allotted 60 frames, as required for all k-bounds to be set to 2. Note that some of these

loops only execute one iteration, and thus k = 2 is somewhat inappropriate. Unfort cntely,

the loop schema requires that the minimum number of frames are allocated anyway. These

loops should have been "compiled away," in any case. In addition, InitMesh contains 9 loops

with a single lev l of interesting unfolding, each contains an inner loop with limited unfolding.

These are each allotted 6A/185 frames, and the k-bounds are determined by dividing by 3. The

collective maximum activation frame requirement of these 1-level loops is 27n, so this is used

as a threshold. Finally, InitMesh contains three complex loops, where ;-n Outer-In policy is

followed. The loop nest for InitMesh-5 and InitMesh-5-0, containing calls to Sin and Cos, is

allotted a fraction, 14/(14 + 58 + '8), of the resources remaining after subtracting Lhe resources

allotted to the 0-level and 1-level loops. The k-bounds are determined as in Chapter 5, and

similarly a fraction, 58/(14 + 58 + 58), of the resources are allotted to each of the other nests.

Similarly, the branches in the body of Simple are grouped as 0-level loops, 1-level loops,

2-level loops, and then the individual code-blocks invoked within the loop. The Rmin threshold

splitting policy is employed recursively, and whe ever we arrive at a loop nest with more than

,one level of useful unfolding an Outer-In policy is employed. This yields the results shown in

Figure 8.2 for 4 steps on a 16 x 16 mesh and in Figure 8.3 for 4 steps on a 25 x 25 mesY.

Here we see that most of the potentially concurrent activations do indeed co-exist, ts the

nas, ed neAk ;ctivation frame usage, A,,,,,, is consistently more than half the allotment, A.

As in ,re unfolding is permitted, howeve;, this ratio drops. In comparison, the profile for Simple

(4 iterations on a 16 x 16 mesh) shown in Chapter 2 has .4,,, = 53,777 and P,, 1,322.

Thatt I.,:ofile was cor!puted by allowing all the FOR loops to unfold to the t tal number of

itcreatins, keening tme WHILE loops (Region and InvPoly) bounded at 2. The profile for this

pr,,graim shown inl Chapter 3 achieves the same -:erage parallelism with A,,,, = 29,999, by
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A Amax Aave O Pave

2,000 1,835 869 327 41

4,000 3,336 1,694 624 97
8,000 5,180 2,880 1,073 187

16,000 9,993 5,315 2,488 427
32,000 18,782 9,320 4,909 875

Figure 8.2: Behavior of k-Bounded Simple, 4 Iterations on a 16 x 16 Mesh for Several Activation
Frame Limits and Structure Storage Limiting the Outer Loop to 2.

A Ay,, Aa,, Te a Pave

2,000 1,903 913 339 39
4,000 3,541 1,684 687 78
8,000 6,682 3,192 1,361 156

16,000 10,810 5,915 2,274 408'
32,000 20,094 11,041 5,133 1,020

Figure 8.3: Behavior of k-Bounded Simple, 4 Iterations on a 25 x 25 Mesh for Several Activation
Frame Limits and Structure Storage Limiting the Outer Loop to 2.

setting the k-bound for the top-level loop to 2, as well. The smoothness ratio, Aave/Ama , is

roughly one-half throughout, and it actually improves slightly at the high end of the resource

spectrum.

In the last column we observed that increasing the resource allotment allows more parallelism

to be exposed. In fact, the parallelism increases more than linearly with resources, until we

reach a point where most of the useful parallelism is exposed. One explanation for this is

that as resources become more plentiful the partitioning of resources at the branch points more

accurately reflects the relative sizes of the sub-computations. When resources are scarce, we are

forced to give a sizable fraction to the smaller computation, but when they are more plentiful

the thresholds "kick in" and the larger computation receives a comparatively larger share. In

effect, the threshold policy establishes a piece-wise linear function representing the partitioning

of resources at each branch point.
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8.4 Conclusions

In bringing together 'he various policy components and applying the complete policy to a fairly

large example, we are able to cee how the analysis phases contribute to isolating the important

portion of the program. Fairly straightforward analysis is surprisingly effective, although we

have noted situations in which more powerful analysis techniques would pay off. Even though

we are dealing with programs in the large, the information we need to extract is crude enough

that the compilation task is tractable. The performance of the resulting policy is shown to be

quite good on this program, under the ideal execution model.
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Chapter 9

Conclusions and Evaluation

We have demonstrated that excessive resource usage is a serious hazard for general purpose,

highly parallel computation; introduced a mechanism, k-bounded loops, for controlling paral-

lelism and resource usage in programs; and developed a policy for employing the mechanism in

the context of scientific programs. The mechanism is very attractive, as it provides tremendous

control at a small execution cost and it makes the machine easier to build. Static analysis

is used to estimate worst-case resource requirements and to form a crude estimate of the dy-

namic behavior of the program. Based on this analysis, we augment the program systematically

with code to determine the k-bounds, based on top-level resource constraints and key program

variables. The quality of the augmentation policies has been explored analytically and experi-

mentally for simple program structures. Applying the technique to a large program, we find that

the approach is quite adequate. With reasonable, although non-trivial, compilation techniques

we can expect to assign k-bounds automatically on a fairly broad class of programs. A first-cut

at the analysis was implemented in order to conduct the studies presented here, although the

programs were augmented manually. In this final chapter, we adopt a more critical eye toward

the work and examine some of its strengths and weaknesses, along with possibilities for future

research.

9.1 Impact of the k-bounded Loop Mechanism

Occasionally, in a complex field of study a simple idea will promote a shift in perspective

and thereby have far reaching impact. The k-bounded loop mechanism has had this role vis

a t'is dynamic dataflow architectures. It is efficient, in that few instructions are added to
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the program, and leads to simpler architectures. In this section, we explore the impact of

this idea on compilation to dataflow graphs and on the recent evolution of dynamic dataflow

architectures.

9.1.1 What's in a tag

The impetus for developing the k-bounded loop mechanism was the excessive token storage

requirements observed in executing even simple programs on tagged-token dataflow machines,

often leading to deadlock. However, once the mechanism was understood, it became clear how

to resolve a variety of nagging problems in tagged-token dataflow architectures. In particular,

the structure of a tag diverged from that under the U-interpreter and became more meaningful

for real machines.

In formulating linear constraint systems to model the token storage requirements of dataflow

graphs, it became clear that for certain graphs there was no optimal solution, i.e., without

additional constraints the solution could be arbitrarily large. This occurs precisely when the

loop has potentially unbounded unfolding. Furthermore, a loop has bounded unfolding if the

graph forms a single strongly connected component[26]. By adding artificial dependence arcs to

the graph, we can connect various components and cause the loop to have bounded unfolding,

where the unfolding is no more than the number of loop variables. Rather than produce a

graph with many dummy loop variables, we introduced a new tag manipulation operator and

constructed a loop schema that allows the bound on loop unfolding to be set dynamically at

the time of invocation.

This new loop schema places additional requirements on well-behaved graphs: when a token

is produced on each output arc of a graph, all activity within the graph is complete. To meet

this requirement, an otherwise well-behaved graph is embellished with signal arcs. It then

becomes straightforward Lo tie completion of an iteration to initiation of the one logically k

later. In doing so, iteration identifiers can be represented modulo k. Furthermore, completion

)f an entire code-block invocation, loop or acyclic, can be detected so that resources associated

with the invocation can be released.

The significance of this is best appreciated with an understanding of the state-of-the-art in

d(ynamic dataflow architectures when this mechanism was first proposed. In the formal model

of tagged-token dataflow execution, the U-interpreter,141, a token identifies the instruction to
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execute by static components of the tag: the code-block name, c, and the node within that code-

block, s. The dynamic instance of that instruction is specified by a unique context identifier,

u, and an iteration identifier relative to that context, i. Rules are given for generating new tags

from old ones using only information local to the node. However, in order to accomplish this

the tag space is use d sparsely. The tag in a real machine must serve the same functions, but

must be of fixed, reasonable, size.

In the MIT Tagged-Token Dataflow Architecture[9] the graph is stored in program memory,

using an adjacency list representation. Thus, the code-block name, c, corresponds to the base

address of the graph for a particular code-block and s is simply an offset from c. To allow

multiple concurrent invocations of a code-block to share code, the token carries the number

of a code-block register (CBR) which contains the base address for the code-block. The CBR

number itself serves as a unique identifier for the invocation, replacing u. However, CBR

numbers are drawn from a fixed pool, so context identifiers cannot be generated by a simple

operation on input tags, as in the U-interpreter. They are explicitly allocated and released (at

the graph level, not at the program level). This requires that it be possible to determine when

an invocation is complete. Although various reference counting schemes are possible, this is

addressed in the TTDA by embellishing the graphs with signal arcs, as discussed above.

The iteration identifier portion of the tag is also of fixed size on this machine. Therefore, tag

manipulation operations in loops must check for overflow and, when it occurs, send the input

token to an auxiliary destination. This causes a new CBR to be allocated, thereby acquiring a

new collection of iteration identifiers. k-Bounded loops eliminate the need for overflow detection,

by setting k no larger than what the iteration field can represent. The embellishments to the

graph to detect completion of invocations are essentially what is required to detect completion

of iterations, so by using this "completion signal" in an incremental fashion bounded loops can

be implemented with little additional overhead.

The outcome of this line of development is that the nature of the tag has become quite

different from that in the U-interpreter. Rather than uniquely identify each operation by its

context in the overall execution of the program, the tag identifies the resources that are to

be used in perforning the operation. For example, instead of specifying the logical node c.s

in the dataflow graph, <CBR,Offset> specifies the location in program memory that contains

the instruction. However, the key for token matching, <CBR,Iteration,Offset> is still large,
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requiring hashing or associative access to locate operands.

9.1.2 Eliminating matching

The logical evolution from this point is to manage the tag space carefully enough that it becomes

possible to equate tags and addresses. In doing so, it is possible to avoid associative matching

all together. Before we start paring down the tag space, we need to consider one additional

aspect of the TTDA, loop constant areas. These are used to hold variables appearing within a

loop, but constant over all iterations of the loop. The free variables of a loop have this role.

A naive translation of loops to dataflow graphs will circulate these values through L-switches,

even though they are unchanged by the loop. In the TTDA, the value of such loop constants

are stored in a special data segment by the set-up portion of the loop. The inner product loop

has five loop constants and only two loop variables. Without a constant area the number of

instructions per iteration would double. In effect, the constant area is a one-level environment.

The CBR contains the address of the associated constant area, as well as the address of the

code-block. 1

Thus, in the TTDA each code-block invocation has associated with it a code segment and a

(constant) data segment, in addition to some dynamically determined amount of the waiting-

matching store. The first step toward careful management of the tag space is to use the data

segment to hold all the local data, i.e., waiting tokens, for the loop. This requires a data

segment per active iteration, call it an activation frame. To make this idea practical, we must

deal with both the size of the frame and the number of frames. The simplest approach might

be to assign a fixed amount of storage in the frame, a slot, for each node in the graph. Then,

the frame can simply be addressed by the instruction offset. Unfortunately, this means that

each slot is used only once and, at any time, only a small fraction of the slots will be in use.

The utilization of storage will be quite poor, much as it is in static dataflow architectures[37].

By observing the data dependencies between nodes, slots can be reused to reduce the size

of the frame. This requires that we separate the instruction offset and operand offset, so a

portion of the tag specifies the location of the instruction to execute and a portion specifies the

'in handling loop set-up, iteration overflow, and assignment of iterations to processors, care must be taken
(iat all iterations are associated with the proper constant area. Bounded loops simplify this problem since a
con-stant area can be associated with each allocated iteration. By reusing the iteration identifier, the constant

;trea is reused, regardless of how the loop iterations are distributed over the machine.
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location of the operands. Assignment of slots in a frame is essentially like allocating registers

via coloring[23]. With a single slot per dyadic node, two nodes interfere unless every input of

one depends unconditionally on the output of the other.

The other half of the problem, keeping the number of frames reasonable, is addressed directly

by k-bounding. In setting up a loop, k activation frames are allocated and linked together, as

explained in Appendix A. By setting the k-bound no larger than the useful unfolding of the loop,

we ensure that most of the allocated activation frames will be in use. Storing loop constants

into activation frames is simply part of the set-up operation. The iteration identifier disappears

from the tag and, instead, we have <code-base, instruction-offset, frame-base, operand-offset>.

An acyclic code-block invocation uses a single frame, while invocation of a loop uses k, the

loop bound.2 This line of evolution has been carried forward elegantly by Papadopoulos in the

Explicit Token-Store architecture[74] and is implicit in recent hybrid architectures[55, 72].

9.1.3 What's in a token

This shift from names to addresses brings with it a change in what flows through the graph:

tokens carry not just values but resources. Portions of the graph perform computations related

to resource management, rather than to computing the answer. This change started with the

introduction of I-structures, since an array of slots is explicitly allocated and filled. The allocate

operation produces a descriptor for the region of storage for the structure. With tags denoting

resources, there is also an allocate operation for activation frames and a similar descriptor

carried on tokens. With k-bounding, the graph contains code that computes how resources are

to be allocated and recycles resources explicitly in the graph. The arcs introduced to control

loop unfolding are essentially anti-dependence arcs: artificial dependencies introduced to allow

for controlled reuse of resources.

This shift has an impact on the compilation paradigm also. At the very least, the presence

of side-effects against resources complicates certain optimizations. On a deeper level, the value

produced in allocating a context for a loop should be viewed as an object that can accept various

commands. One command is to initialize itself for execution with k concurrent iterations.

Another might be to establish loop constants in each frame, although these two operations may
2 Although this new execution model can be formalized without introducing an explicit notion of processor,

to realize it efficiently an activation frame must reside on a single processor or small set of processors.
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be combined. Invoking the loop is a similar command, as is triggering the loop to deallocate

itself. Each of these commands is acknowledged so that a sequence of them can be chained

together.

We may also want to associate the resources used by an iteration directly with the frame,

much like a loop constant, but with different ones in each frame. For example, the object

corresponding to an inner loop invocation may be associated with a particular activation frame

in the outer loop. Thus, the setup for the outer loop builds a ring of frames and invokes

the set-up for the inner loop for each, building a ring of rings. In this case, we may want to

support several loop constant commands, so that inner-loop variables that are also free in the

outer loop need only be stored once and may be used by several inner loop invocations. Other

resources, such as I-structures, may be associated with particular frames as well, or passed

between iterations. Thus, tokens carry references to objects, in addition to values, and objects

may support a variety of commands, with some protocol for sequencing commands.

With resources and resource management code both explicit in the graph, we have meaning-

ful control over the space complexity of a program. For example, many scientific applications

involve a recurrence over some collection of large data structures. The programmer may want

to control how many versions of the data structure co-exist, and can do so by specifying the

k-bound on tlh loop forming the recurrence. Control of activation frame usage requires more

detailed constraints and is probably best stated as a high-level req irement, with the details

resolved according to the policies presented here.

Where the structure of the program is very simple, we may even want to consider merg-

ing resources to produce very efficient code. For example, in a loop that performs a simple

recurrence over a structure, we may want to allocate the structure within the activation frame

for each iteration. If the access patterns are very simple and the bounds are known, we may

want to unroll the loop and remove fetches by holding components of the structure in slots

representing arcs. This is not within the current state-of-the-art in dataflow compilation, but

is an interesting direction for future work.
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9.2 Use of the Ideal Execution Model

The primary problem addressed in this thesis is one of determining how the k-bounded loop

mechanism can be employed in real programs. By focusing on the behavior of programs under

the ideal execution model, rather than under the complex set of influences present in any real

machine, we were able to make headway on the development of k-bounding policies for dataflow

programs. An important direction for future work is to verify that these policies are effective

on real machines, and that the guidelines developed here are consistent with program behavior

on such machines. As a first step, we reflect on tih. development here and examine where the

results may break down.

9.2.1 Latency

First, let us consider the effects of communication latency. If every token were subject to

the same fixed communication latency, 1, we would expect to see little qualitative effect on

program behavior other than a kind of time dilation. All the operations in a step under the

ideal execution model would fire, then tokens would be in transit for I steps, and then the next

step would take place. The exception to this is that I-fetch operations should be subject to

twice tle latency penalty, since two messages are sent. This introduces a small, but potentially

pervasive, change in the execution schedule. This change is even more pronounced if we suppose

that only I-structure operations experience communication latency.

The presence of communication latency increases the amount of parallelism required to

keep a given number of processors busy. However, the approach here has been to expose as

much parallelism as possible under a given resource constraint, so the policies should still be

applicable. However, the details of some of the analysis are affected. The most apparent effect

is in estimating the useful unfolding of a loop, cf. Chapter 4. In the presence of communication

latency, it may take longer to traverse certain arcs than others. This can have a significant

effect on the behavior of innermost loops. For example, if latency were experienced only in

the I-fetch operations in our inner product example, the duration of each iteration, c, would

increase but the initiation rate, i would be unchanged. Thus, the natural unfolding of the loop,

= c/i, would increase. By allowing a larger k, the loop is able to sustain a larger number of

outstanding memory requests, so the increase in the critical path length is small, in spite of the
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Figure 9.1: Pve Over k-space for Relax-step', 10 x 10, with A,,a, Optimal Points Marked

increase in latency. The question is, At what point is the effect of latency significant enough to

warrant a change in policy? In the inner product example, with zero latency we have i = 4 and

c = 9, so the latency on I-fetch operations would have reach 10 before the natural unfolding of

the loop would double. Of course, greater unfolding of the outer loop also permits a greater

number of outstanding memory requests. Thus, it is unclear that the policy needs to change.

On the other hand, if latency were experienced on tokens that cross from one iteration to

the next, as would be the case if the mapping to processors were on a per iteration basis, then

both i and c would increase. For innermost loops where i is small, this will substantially reduce

the useful unfolding. In the case where the loop has limited useful unfolding due to a strong

recurrence, c zi, even if the computation in the body is large, the presence of latency will

affect both components sinularly and not change the unfolding of the !Icop.

As a simple experiment to gauge the importance of latency, we may consider the behavior

of the simple relaxation program discussed in Section 5.3.1. Figure 9.1 shows the Pave observed

in executing this program under a modified execution model, in which a token sent to or from

an I-structure cell experiences a latency of 5 time units. Tis means the result of an I-fetch is

available 10 time units after the later of the fetch and corresponding store. We see that under

this assumption the inner loop can unfold beyond the it - 5 estimated for the ideal case and

demonstrated in Figure 5.19 above (Page 111). However, from ki = 5 to ki = 10 the increase

in P, is still quite small, no more than 20% in this example.

The general shape of the parallelism and resource contours differs only slightly from the
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ideal, zero-latency case. A small amount of inner loop unfolding is advantageous under tight

resource constraints, but otherwise the outer loop should be favored, while avoiding a pa-tial

"second wave." Increasing the latency not only increases the potential unfolding of the inner

loop, it increases the effectiveness of outer-loop unfolding by increasing the duration of each

iteration.

Deferred reads effectively introduce long latency in the response to I-fetch requests, even

under the ideal model. They may cause even a simple loop to unfold arbitrarily, in the absence

of k-bounding. Deferred reads Pre plentiful in several of the examples studied here, and yet

the policies still proved effective. In the relaxation examples, each step issues reads against the

version of the mesh produced by the previous step and many of the reads may be deferred.

All of the producer/consumer relationstups studied in the context of adjacent loops give rise

to deferred reads. An avenue of future work is to consider the effects of deferred reads more

carefully. Through detailed analysis of the graph, we can estimate the benefit due to allowing

greater unfolding of loops in the presence of deferred reads, with certain assumptions on the

pattern of corresponding stores. For example, in the inner product loop shown in Figure 2.3,

assume that all the I-fetches are deferred until some time and then instantly they all are

satisfied. With the loop tightly bounded, the time to completion after the fetches are satisfied

is essentially 4n steps. This is determined by the circulation of the index variable. With the

loop allowed to unfold completely, this may be reduced to 2n steps. This is determined by

circulation of the accumulation variable. For intermediate k-bounds, the time to completion is

at least 4n - 2k. Under more realistic arrival patterns, the benefit of large k-bounds may be

even smaller. Such initial studies in this direction, as well the quality of results obtained by

ignoring deferred reads in policy formulation, indicate that the return is likely to be small.

The presence of latency and deferred reads may suggests that inner loops with significant

potential unfolding undcr long latency assumptions should be treated as UNfold-If-Necessary,

rather than Limited Useful Unfolding. This increases the flexibility in the k-bound assignment

for nested loops when resources are plentiful, but compromises the effectiveness of the threshold

technique in handling adjacent loops.
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9.2.2 Variations in execution time

A short-confing in our simple model of loop unfolding is the assumption that iterations are

homogeneous, i.e., that i and c are constant. In practice variations occur due to network and

resource contention, as well as data dependence in the computations. Consider the following

very simple example:

{for i from 1 to n do
1[i] = f i};

The policies developed here would give the same amount of resources to each invocation of

f. However, if the computation within f is highly sensitive to the input data, such a policy

will starve some iterations while others are over-endowed. The k-bounding mechanism itself

is not the problem, because fixing the number of concurrent iterations does not require that

they all receive the same resources. The basic technique of augmenting the program with

resource management code also does not require equal allocation to all iterations, although

that is usually the simplest approach. The resource management code can get arbitrarily

complex. The primary problem is determining that some sophisticated partitioning rule should

be applied. Also, if we have such a rule, solving for k can be difficult.

However, if the computation within the loop can vary widely, it must also be fairly complex.

It probably contains nested loops and even branching. The policies developed here respond

somewhat to data-dependent behavior, as the bounds established for subordinate loops and

branches can be data dependent. The Simple code does exhibit data-dependent behavior, as

the duration of each table look-up and the number of table look-ups per point depends on data

values at the point, unfortunately, the tables employed with the benchmark code are so small

that the variations are relatively minor.

Variations in execution time are manifested under the ideal execution model, but in a more

realistic model they can occur even when the computation is homogeneous. The k-bounded loop

approach does not prohibit variable resource allocation to iterations, but also does not cater to

it. It might be possible to establish a pool of resources to be used by the k concurrent iterations,

where the distribution of resources over the iterations is dynamic. However, such a powerful

mechanism comes at a significant cost and runs the risk of deadlock due to over-commitment

of resources, much like the dynamic throttles, discussed in Chapter 1.
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9.3 Compilation Techniques

In this thesis we have focused on development of policies for k-bounding; the analysis techniques

were implemented as necessary to carry out a policy. This included automatic construction of

call trees, propagation of Rmin values up the tree, symbolic analysis of iteration counts, critical-

path length analysis, and worst-case token storage analysis. The synthesis aspect, augmenting

the program with code to determine k-bounds, was performed manually. However, an impor-

tant sub-goal of the work is to understand what compiler analysis is necessary to implement

reasonable policies and what additional gains are possible with more sophisticated analysis.

The bottom line is that the better the analysis, the better the policy. Fairly simple analysis

goes quite far, but will miss non-trivial dependencies. Where we fail to detect the presence of

a dependence, we may err in the direction of investing resources where little use can be made

of them. In this section we discuss various kinds of analysis, roughly in order of decreasing

importance.

Determining the maximum useful unfolding of innermost loops is crucial. These loops are

usually nested quite deeply, so any resources invested there are multiplied many fold. For the

kind of inner-loop constructs that occur frequently in practice, straightforward graph analysis

is sufficient. In the presence of conditionals and dependencies through data structures, more

sophisticated analysis is required. Still, fairly crude analysis is adequate, since it can only affect

performance, not correctness. For example, with conditionals we need to produce a reasonably

good estimate of the path lengths through the conditional. It may be possible to weight the

two arms with a probability estimate, as in Paraphrase[761, or make worst-case assumptions.

Traditional subscript analysis can be applied to detect dependencies through structures[87],

although for innermost loops it generally is not necessary.

Detecting outer level loops with limited useful unfolding or expensive unfolding is also

crucial. With an Outer-In bias, failure to detect such a situation can result in a very poor

policy, i.e., most of the resources are invested where little use can be made of them. In scientific

applications such loops usually involve structure recurrences. Although it may be difficult to

determine the exact nature of the recurrence, it is straightforward to determine that a loop

contains a structure allocation. In such cases, a version of the structure will exist for each

concurrent iteration. Usually it is not difficult to derive a simple symbolic expression for the
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size of the structure, although determining that the structure is "big" may have to be heuristic.

Providing a hard guarantee on structure storage usage requires determining the lifetime of

structures, in addition to determining their size.

Analysis of iteration counts is very important and serves a dual role. Extensive use of array

comprehension or higher-order functions can give rise to many loops with a small, constant

number of iterations. These need to be recognized, in order to avoid investing resources there.

It is also valuable to be able to form simple symbolic expressions for the iteration counts of

various loops. Wherever this is possible, we can avoid assigning a k-bound greater than the

iteration count. This is critical to the policies dealing with nested loops, as well as for the

threshold splitting policy. Also, we can avoid k-bounds that give rise to a sparse "second

wave". It very important to lift iteration count information up as far as possible in the call

tree, because doing so enables policies that operate on multiple loop levels at once, such as

Inner-Out.

On the experimental side, more study is required to fully understand the implications of not

being able to determine iteration counts, as in symbolic programs and sparse matrix routines,

which employ list traversal extensively. Also, more study is required of programs with very

dynamic behavior, such as numerical quadrature methods[58].

Sophisticated dependence analysis can improve policy determination in a variety of ways.

The simplest form is inter-iteration dependencies via arrays which may further constrain the

unfolding of an inner loop. More important is detecting strong recurrences in loops containing

code-block invocations and, possibly, nested loops. The latter can be tricky in a non-strict

language because the subordinate invocation may produce results before all the arguments are

received and may continue executing after the result is produced. Thus, even the following

trivial example it is non-trivial to determine the strength the recurrence:

{while p I do

next I = f A
finally Al

Clearly a new iteration cannot start before A is available, but the nature of the overlap depends

on the internal structure of f. If A is a scalar produced by the final computation in f there is

a very strong recurrence, but not if A is an I-structure returned from f while it is still being

filled. In many cases where there is a strong recurrence, it is also easy to detect. For example,

the final expression of a function may have a scalar result that is unconditionally dependent on
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every node in the graph. However, a variety of trickier cases can arise, as when the outer loop

reads an element of an array that is the the last value stored by an instance of the inner loop.

With fairly novel kinds of dependence analysis it would be possible to characterize structure

recurrences better, and thereby arrive at better policies. For example, a class of structure

recurrences are local in the sense that each point in a structure depends only on a local region

of the previous version of the structure. Mesh relaxations often exhibit this kind of recurrence.

The critical path of the computation producing a new point determines the useful unfolding of

the loop with the recurrence. A different class of structure recurrences are global, in the sense

that each point in a structure depends on essentially all points in the previous version. This can

arise through convergence tests, step-size calculations, and the like. Detecting it may require

tracing dependencies through several structures and phases of the computation.

The data presented here indicates that substantial gains are possible from traditional loop

optimizations, such as static unrolling and loop interchange. By virtue of the recurrence on

the index variable, small innermost loops offer only modest parallelism. This suggests that,

where possible, the strongest recurrence in a loop nest should be moved to the innermost level.

Alternatively, the size of the body can be increased by unrolling the loop. This exposes more

parallelism, often with little increase in resource requirements, and reduces program execution

overhead[8].

The severity of the parallelism/resource problem is strongly affected by the degree of non-

strictness permitted. We have seen that the problem is very severe for Id programs, where all

data structures and functions are non-strict. The problem appears to be less severe and easier

to manage in more restricted contexts. Certainly, it would be beneficial to determine when a

function cannot make significant progress without a particular argument, as this can be used to

defer initiation of the function. Also, it would be valuable to determine when a pair of adjacent

loops can be safely serialized.

In summary, fairly simple analysis techniques adequately detect the most common factors

limiting useful program unfolding, but very sophisticated analysis is required to detect the more

esoteric constraints. In general, by falling to detect a dependence w- assume two computations

will execute in parallel when, in fact, they will not. This is in dire, )osition to the situation

with parallel execution of programs expressed in sequential languages. Thus, even though a

variety of analysis techniques can be borrowed from that work and the ultimate goals of the
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two approaches are similar, we will never arrive at the same point. We will err in the direction

of presuming parallelism that is not present, while they will err in the direction of missing

potential parallelism.

9.4 General Programs

The importance of k-bounding is most apparent in scientific applications, since they are usually

iterative in nature, and we have focused on this fairly restricted class of programs throughout

this thesis. In this section we consider briefly how k-bounding might be extended to man-

age parallelism in general programs. We certainly cannot make hard guarantees on resource

requirements, but may still be able to apply some of the techniques. Two directions hold po-

tential. One is based on the dynamic execution tree techniques discussed in Chapter 1, where

the scheduling unit is a fairly large portion of the program, on which k-bounding is applicable.

The second is to employ k-bounding as if we were within our restricted class of programs, and

accept that no resource guarantees are possible.

9.4.1 Scheduling resource bounded graphs

The dynamic execution tree techniques for controlling parallelism discussed in Chapter 1 gen-

erally involve making decisions on a per code-block invocation basis. No special attention is

paid to the structure of the program, so these techniques are fully general. On the other hand,

because they ignore program structure, they are not very robust. Improper decisions can lead

to deadlock. Recall, in our case study using the Simple code the call tree included nearly 300

nodes. The dynamic execution tree is immense! If decisions are made on a per code-block

invocation basis, a huge number of decisions must be made. Most of them are trivial, but a

few are very significant. We saw that static analysis rapidly focused attention on the critical

portion of the program. Thus, it would seem that by combining the two approach i it might

be possible to generalize loop bounding, while making dynamic execution control more robust.

Suppose we take a portion of the program, rooted at some function f, where k-bounding

is applicable. This portion is analyzed and augmented with a new resource parameter, r. The

augmented function, f', can be used in any context and will operate , tnin resource constraint,

r. We call such a program a resource bounded graph (RBG). Note. that even though k-bounding
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can always be applied from the bottom up, by considering a nest of loops in the ,ontext of use,

we are able to make a better decision and may arrive at a different policy than we would by

looking at the nest in isolation.

We can view a general program as including a collection of RBGs with some recursive back-

bone and can consider employing a dynamic scheduling approach (branch under low parallelism,

not under high), where the scheduling quanta are RBGs. Thus, the decision we need to make

is not just which object to schedule when, but also how much of the available resources are

provided to it. It will manage its own resources and scheduling internally. Instead of making a

large number of trivial decisions, we make a few well-considered ones.

9.4.2 k-bounding without guarantees

The other approach to dealing with general programs is to employ the k-bounding approach,

even where the conditions for applicability are not met, e.g., where the call tree cannot be

constructed. The idea of passing in a resource limit and partitioning resources at branches under

program control can be applied to any program. Where an RBG is entered, the computation

within the RBG is self-managing, so unfolding is determined by the resource limit at the root

of the RBG. At some level within the execution tree, the resource limit for a given branch

becomes so small that no more unfolding can occur. However, the branch may continue to

extend arbitrarily deep, so we can make no absolute guarantees on resource usage. We may

want to use only a fraction of the resource initially, in case some branch exceeds its limit.

In formulating a policy for controlling unfolding in the general case we have less information

to work with than in the restricted case studied here. We can no longer determine an Pi,,

value for a given branch. We will need to guess one, in order to split resources at a branch. The

threshold technique can be applied, where branches are simple enough to offer and/Rz. Outer-

In policies also require taking a guess at the minimum requirements per iteration. However, for

a given r and k, we can proceed with determining loop bounds for the internal nests.

9.5 Summary

Resource usage is a serious concern for any parallel machine, because more parallelism generally

means more storage. We have demonstrated the seriousness of this concern in the context of
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dataflow machines and introduced a mechanism for coping with it, k-bounded loops. The

mechanism is attractive because it is effective and makes machines easier to build. There is

always a danger in computer architecture that an elegant mechanism will prove impossible to

employ in practice. From the work presented here, we can expect to produce adequate k-bound

assignments automatically for a reasonably large class of programs. Simple guideline- have

been laid down for dealing with nested loops of various forms and for partitioning resources

among adjacent loops. Empirical studies suggest that policies based on these guidelines perform

well, although final judgment will require examination of a broader, representative sampie uf

applicatiuns on real dataftow machines of significant size.
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Appendix A

k-Bounded Loop Machine Graphs

In this chapter, we pursue a more formal development of the k-bounded loop mechanism.

We demonstrate certain conditions that guarantee proper bounded-loop behavior and develop

a loop schema that meets these conditions in a simple manner. We also discuss trade-offs

present in variations on this schema. The k-bounded loop schema is illustrated at a dataflow

machine-graph level[85] first for the MIT Tagged-Token Dataflow Architecture[7] and then for

an Explicit Token-Store dataflow architecture[74]. These machine graphs are stylized, but still

rather primitive. Later, we characterize bounded loops at the more abstract program-graph

level, which provides a framework for powerful optimizations. Finally, we demonstrate how

structures can be recycled within a loop.

A.1 TTDA k-Bounded Loop Machine Graph

In this section we develop in detail the k-loop schema presented in Chapter 3. First, we establish

general conditions for detecting completion of an iteration and using this to control initiation

of later iterations. We discuss some of the trade-offs involved in various ways of meeting these

conditions and describe a simple, efficient k-loop schema. Finally, we describe setup and cleanup

for such loops.

A.1.1 Completion detection

If initiation of loop iterations is to be dependent on the completion of logically prior iterations,

completion of each iteration must be detected. It is not enough that the values produced by an

iteration are available, because some nodes may not produce an output, e.g., the switch for a
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value used in only one side of a conditional or an operation with side-effects may fire without

producing any result tokens. Thus, we must embellish the graph to handle these cases.

Definition 1 A loop iteration is complete when all operations for the iteration have fired and

no tokens or deferred-reads remain in existence for the iteration. An iteration starts when the

first token is produced for the iteration.

To detect completion we add a signal output to every node that has no meaningful output

and reduce the collection of signals in a block to a single overall signal. Details of this process

are explained in [26] and [85]. For loops this means the predicate and the body may each

produce a signal. If either does, an extra L.switch is provided and the signals are brought

together as indicated in Figure A.1 by the portions of the graph shown in bold.

IN-1 IN-n Si nal

1
I Predicatel

I-switch * I-switch I~Witc

I Loop Body I

L

Figure A.1: Dataflow Loop with Signals shown in Bold
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Theorem 1 For a loop as in Figure A.1, suppose all the L-switches fire producing tokens uith

iteration number i, then iteration i - 1 and all previous iterations are complete.

By construction, every node in the loop is on a path from an L-switch to an L-switch. E

There are many ways to determine when all the L-switches of an iteration have fired, so

we define a general condition for termination detection. First, we need to introduce some

terminology. In the various examples shown in the thesis, nodes in the dataflow graphs have

one or two sets of result arcs. More precisely, we say a node has one or two outputs, each of

which may have several result arcs connected to it. When a result is produced for an output it

is placed on every arc connected to the output. A set of outputs satisfies Term(i)j if producing

a result at each output for iteration j implies that iteration i is complete.

Corollary 2 Any set of outputs that covers the L-switches, i.e., for any program input the set

of outputs are dependent on every L-switch, satisfies Term(i - 1)j.

The TRUE outputs of the L-swztches satisfy this condition trivially. They can be reduced

to a single signal via a tree of no-ops, called a completion tree, as was indicated in Chapter 3

and as shown in in Figure A.2. However, with a little graph analysis it is usually possible to

find a smaller collection of outputs, farther inside the loop body, that unconditionally cover the

L-switches. This reduces the size of the completion tree, but, as we will see later, reduces the

utilization of the resources allocated to the loop.

A.1.2 Initiation control

Given a means to detect when an iteration is complete, this event can be used to trigger the

initiation of a later iteration. As a general condition for initiation control, a set of outputs

satisfies Gate(i)j if no L-switch can fire producing a token for iteration i without a token

having been produced on one of the outputs for iteration j.

There are various ways to locate a set of arcs that cover the L-switch inputs, however, by

exploiting the structure of the loop schema itself this can be done trivially. Iteration i + 1

cannot begin until the result of the loop predicate for iteration i is produced and delivered to

the control inputs of the L-switches. By simply withholding delivery of the predicate value,

initiation of further iterations is inhibited.
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Corollary 3 The output of the predicate satisfies Gate(i 4 1)i.

To constrain a loop to have bounded unfolding of some amount k, it is enough to tie

If'ri(i I to Gatc(i +- k~i - . This can be accomplished by inserting a Dk-2 operator, which

increments the iteration number by k - 2, between a termination tree that detects firing of Cie

L-su'ztchics andl an L-gate that prevents firing of the switches, as shown in Figure A.2.

IN-I IN-n Signal

Predicate

I-switch * I-switch I-switch I
ate

Loop Body

D-2

Figure A.2: Bounded Dataflow Loop

Definition 2 Given a loop L, a k-bounded loop for L is formed by taking a set of outputs

satisfying Term(i)i,, reducing them into a Dk-2 operator, and using the output of that node

to gate a set of outputs satisfying Gate(i)j~i.
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A.1.3 Iteration reuse

Now that we have built up the basic mechanism, we need to show that loop unfolding is con-

trolled in the manner we expect, i.e., that a k-bounded loop can 1iin',,d to exhibit k concurrent

iterations and no more. Also, it should be possible to execute such a loop with resources for k

iterations, where these resources are reused in a natural way.

Theorem 4 Given a k-bounded loop, initiated with triggers for iterations 0 through k - 2 at

the L-gate and initial input tokens for the loop variables, at most k consecutive iterations can

be active at any time, where k > 2.

We must show iteration i + k is initiated only after iteration i completes. Iteration i + k

starts when an L-switch fires with inputs in iteration i + k - 1. This requires that the Dk-2

fired with input in iteration i + 1, which in turn requires thtt every L-switch fired with

inputs in iteration i.

Since the loop predicate in iteration i must be evaluated before i+ 1 may begin, loop iterations

are initiated in logical sequence. C3

Since only k - 1 trigger tokens are provided, it might seem that there can be only k - 1

iterations active simultaneously. In fact, there is a region of the graph where k iterations can

be active simultr.neously and a region where only k - 1 iterations can. Let recycte be the cyclic

graph formed by the portion of the graph reducing the L-switch outputs to the Dk-2 and the

portion connecting the Dk_ 2 to the inputs of the L-switch inputs. At any point in the execution

of the loop there are exactly k - 1 waves of tokens in recycle. Initially k - 1 tokens are provided

as trigger inputs to the L-gate. Each of these allows a wave of tokens to flow through the

L-switches and through the termination region, eventually producing a new trigger input with

iteration number k - 1 larger.

Nonetheless, k iteration numbers may be in use simultaneously. Let us consider a simple

example. Figure A.3 shows the graph for the following simple loop.

FOR i <- 1 TO n DO next sum = sum + (f i);

This has two L-switches corresponding to i and sum. Suppose that the L-switch for sum does

not fire. Initially k - 1 trigger tokens are placed on the iteration control arc, and the predicate

depends only on i, so k - 1 waves may pass through the L-switch for i. The tokens on the

185



outputs of the firing L-switch have iteration numbers one lz-rger than the tokens for the same

wave waiting at the inputs to the other L-switch; thus the k - 1 waves use k iteration numbers.

This shows that k iterations are active, but not in an interesting sense. The following result

shows that all k iterations can be doing useful, parallel work.

Figure A.3: Graph for a Simple Summation Loop

Theorem 5 A k-bounded loop can have as many as k instances of a node enabled simultane-

ously.

Consider the loop discussed above and pictured in Figure A.3, where n is assumed to be

larger than k. Assume the node corresponding to f does not fire. The first k - 1 iterations

can be initiated by virtue of the initial trigger tokens, so loop variable i circulates k - 1

times, enabling k - 1 instances of f with iteration nvmbers I through k - 1. Once the initial

value of sum passes through the L-switch, completion of iteration number 0 is detected in

iteration 1 and a trigger with iteration number k - 1 is produced. This allows i to circulate

again and A to be enabled for iteration k. Lo

As a more realistic scenario, suppose I is a function or expression that takes a long time to

compute, compared to the rate at which the index variable is incremented. The same reasoning

shows that under fair scheduling k waves of tokens will be passing through concurrently.
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Observe that if termination were detected using the output of the + no termination tree

would be required. However, it would not be possible to have k instances of f enabled concur-

rently, since f would be part of the recycle region, in which only k - 1 waves can be active.

The above results imply that in a k-bounded loop all arithmetic on iteration numbers can

be performed modulo k. In a Tagged-Token Dataflow architccture, this means the iteration

field on the token can be kept to a fixed size. Iteration numbers are effectively recycled within

the graph. Moreover the utilization of resources is good, in that all k resources can be in use

simultaneously.

A.1.4 Loop setup

To start a k-bounded loop, trigger tokens carrying iteration 0,... , k - 2 must be deposited on

the iteration control arc. This can be accomplished by the simple loop shown in Figure A.4.

The value of k is provided as input with iteration number 0. The set-k operation associates k

with the invocation, so that iteration numbers can be manipulated modulo k. It is important

that completion of this setup graph be implicit in the production of all the triggers, and to

meet this condition in a simple manner, we have employed a new operation, G-switch, which

is a variant of L-switch. It receives a data input and a boolean control input. If the control

input is TRUE, the value on the data input is produced on the left output, with the iteration

number incremented. Also, the data input is produced on the right output, without change to

the iteration number, regardless of the value of the control input. Thus, the G-switch produces

two outputs with a TRUE control input and only one with a FALSE input.

Observe, the first iteration of the loop can begin as soon as the first trigger is produced. Fur-

ther triggers are produced in the order that further iterations require them, thus the production

of triggers overlaps nicely with the early iterations of the loop.

A.1.5 Loop cleanup

The loop graph we have constructed thus far correctly executes as a k-bounded loop, but is not

self-cleaning; k - 2 trigger tokens are left on the iteration control arc after the loop finishes.

Removing these tokens is a bit involved and requires that the behavior of the L-gate be more

complex than what we have described. Suppose the iteration number on the tokens emitted

from the FALSE outputs of the L-switches carry iteration number i. We need to ascertain exactly
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* set-k

PredicateTL
-sWitc > 2

Figure A.4: TTDA k-bounded Loop Setup

what tokens remain in the graph. If the L-gate had not fired for the final predicate value, the

iteration control arc would eventually contain k - 1 triggers starting with iteration number i. In

the final firing of the L.gate, the trigger token with iteration number i is removed, so eventually

the iteration control arc will contain tokens carrying (i + 1) mod k,..., (i + k - 2) mod k.

To remove tokens from the iteration control arc, we allow the L-gate to have an alternate

output, as indicated in Figure A.5. It becomes a variant of the switch. If the input value is

either TRUE or FALSE, the value is produced on the normal output. Otherwise, it is produced on

the alternate output. Thus, the cleanup loop shown in Figure A.5 can remove the trigger tokens

by sending integer values to the L-gate. The cleanup loop is initiated by a token from the FALSE

output of one of the L-switches, providing the final iteration number. The cleanup completes

only after all the trigger tokens have been removed by matching with tokens generated by the

cleanup loop. To ensure that the k-loop schema is well-behaved, completion of the cleanup loop

is gated into the normal loop signal.

Observe that the cleanup loop starts removing tokens as soon the L-switch fires for the loop

exit. At this point, the final k iterations may still be in various stages of completion. The

cleanup loop consumes triggers in sequence (oldest first), so if iterations terminate in the order
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that they were initiated, the removal of trigger tokens overlaps nicely with the final iterations

of the loop. This loop schema is used in compiling all the examples presented in the thesis.

A.2 Monsoon (ETS) k-Bounded Loop Machine Graph

In an Explicit Token Store (ETS) dataflow machine[74], a k-bounded loop is realized by al-

locating k activation frames and forming them into a ring. Arithmetic on iteration numbers

corresponds to sending tokens to the frame a certain distance around the ring. In this section,

we develop the detailed k-bounded loop schema for the Monsoon architecture, analogous to

that developed above for the TTDA.

The tag carried on a token in this architecture identifies the instruction that is to be exe-

cuted, IP, and the location that is to be accessed in performing a match, fetch, or store, FP.

The basic technique for detecting termination and controlling initiation in the ETS framework

is essentially like that for the TTDA. The primary difference in the ETS graph is the explicit

interaction with the activation frame. Rather than generate k - 1 trigger tokens, we must allo-

cate k frames. Each frame contains four special values: the tag for the return point (Parent), a

frame pointer for the logically previous iteration (Prey), a pointer to the current frame (Self),

and a frame pointer to the logically next iteration (Next). In effect, these form a doubly-linked

ring, with each frame holding a pointer to itself and to the caller of the loop.

The ETS k-loop graph is shown in Figure A.6. The graph looks like a "repeat" loop at

first glance, because the body appears above the predicate. Actually it is not; the predicate is

evaluated on the initial inputs, before values enter the loop body. The orientation of the figure

is shifted from that in the TTDA figures to reflect loop behavior on an ETS machine better. The

bank of L-switches in the TTDA loop forms the boundary between iterations; the iteration field

is incremented on the tokens sent into the body. Accordingly, L-switches are replaced by send

operations in the ETS framework, which send the value appearing on the left input to the tag,

<FP,IP>, appearing on the right input. A small integer constant is added to IP so that the

proper instruction in the receiving graph can be selected. The IP of the receiving instruction

is indicated by dashed arcs in Figure A.6. As long as the predicate evaluates to TRUE, the

tag input for the send operations will carry the frame pointer for the next iteration. When

it evaluates to FALSE, the sends receive a tag carrying a frame pointer for the caller, causing
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values to be returned from the loop.

The first three special frame pointers, Parent, Prev, and Self are treated as loop constants,

established when the ring is built. They can be accessed by a fetch operation, which reads a

specified slot in the current frame. The Next slot serves a role analogous to the trigger tokens

on the iteration control arc in the TTDA graph. It is accessed by a fetch-eztract operation which

causes the read to be deferred until the slot is full, if the slot is empty, and empties the slot upon

reading it. Observe, that while the Next slot is empty, no tokens are sent into the activation

frame for the next iteration. If the slot is full, it contains a tag for the next frame and signifies

that that activation frame is ready to be reactivated. In reactivating the next frame, the slot

is emptied, thereby preventing additional activations until the current one is complete.

The send operation produces one token that is sent to the remote frame and a second token

that is delivered to an operation in the current frame, signaling completion. As in the TTDA

loop, these signals are reduced through a termination tree. Upon termination of an iteration,

the previous frame must be informed that reactivation is permitted. Thus, the final operation

in an iteration sends the current frame pointer, Self, to the Next slot in the previous frame, Prey.

This is shown as a Remote-Store, which stands for a pair of operations: a send in the current

frame directed to a store operation in the remote frame. This final operation is equivalent to

the Dk-2 in the TTDA graphs.

In effect, each frame has a special handle. Possession of the handle implies permission to

activate computation within the frame by sending tokens to it. While the loop is executing, an

iteration activates the next frame by sending values of the loop variables to it. After the ring is

created, the caller should possess the handle for one frame in the ring, so it can activate it with

the initial values of the loop variables. We will see that other kinds of activation are possible:

initialize, update, and deallocate. The computation resulting from an activation detects its own

completion and returns its handle in an orderly fashion, as we will see below.

When the predicate turns FALSE, the final values of the loop variables are sent back to the

caller. In addition, a handle is passed to the caller, so that it can cleanup the ring of frames,

or even reuse it. In either case, reactivation starts not with the frame in which the predicate

turned FALSE, but in the next frame. Thus, once the handle for Next becomes available, it is

returned to the caller as well, as shown in Figure A.6
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A.2.1 Loop setup

The setup process for k-bounded loop in the ETS framework is a bit more complicated than

that for the TTDA, since frames must be allocated and links established. Also, obtaining a

nice overlap is difficult, because the first iteration cannot determine its predecessor until the

entire ring is constructed. (In the TTDA loop this is accomplished by simple arithmetic on

the iteration number.) The idea behind the setup process is depicted in Figure A.7. Recall

each frame for the loop is to contain three special constants (Parent, Prev, and Self) and has a

reserved slot for the handle for the next frame. The caller of the loop allocates the first frame

and provides the initial values for Parent and Self. For each of the k frames, all three of these

special values must be stored before the handle for the frame is returned, indicating that the

frame is ready to be activated. The setup for all but the last frame allocates the frame for the

next iteration and sends the three special values to it. The last one sends the correct value of

Prev to the first frame. Each frame detects completion of the setup operation, including storing

the three special values, and returns its handle. For all but the first frame, the handle is sent

to the Next slot of the previous frame; for the first it is returned to the caller.

The graph for the setup process is shown in Figure A.8. It is essentially a loop with six loop

variables: the frame pointer for the previous frame (Prev), the return address for the frame

handle (RA), the tag for the return point (Parent), the current frame pointer (Self), the frame

pointer for the first frame in the ring (First), and the value of k. All but the first of these are

supplied by the caller to the first frame. Until k is decremented to 1, a new frame is allocated

and the appropriate values of the six loop variables are sent to it. In the final frame, the correct

value of Prey is sent to the first frame. Each iteration detects its own completion and sends its

frame pointer to RA.

While some overlap is achieved in setting up the ring of frames, the first iteration of the loop

cannot begin until the entire ring has been allocated and the value of Prey has been supplied to

the first frame. This is not necessarily a problem, because loops are often invoked long before

their input data are available, but in certain cases it will add to the critical path considerably.

To obtain better overlap, the value of Prev would have to be circulated during loop execution,

not setup, so that the handle is returned when an activation is complete and the value of Prev

is available. Thus, we can trade reduced setup time for an increase in the number of operations

per iteration.
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Loop constants can be stored into each activation frame in the ring for a k-bounded loop

as part of the setup process. The setup graph is embellished with another input for each loop

constant. The value is stored into the current frame, passed through a switch, and forwarded

to the next frame, like the Parent value in the graph shown in Figure A.8.

A.2.2 Loop cleanup

Loop cleanup is fairly straightforward in the ETS framework, as shown in Figure A.9. The

cleanup process traverses the ring of frames. Once the handle for the next frame is present, the

cleanup signal is forwarded, and, finally, the frame deallocates itself. Since the cleanup process

begins at the first frame after the one in which the predicate turned FALSE, cleanup overlaps

nicely with the final iterations of the loop.

K

switch > I

Fetch-Ext
QNext

Send

Fetch
aself

Deallocat

Figure A.9: Monsoon k-loop Cleanup
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Like the TTDA k-loop schema, the ETS k-loop schema comprises the three graph fragments

described in this section. Whereas in TTDA graphs these are tied together by common arcs,

in the ETS framework they are tied together by common frame slots, namely, the four special

values.

A.3 1-Bounded Loops

Our development of k-bounded loops thus far relies on the assumption that k > 2. However,

there are a variety of circumstances where we may want no unfolding. The outer loop of Simple is

one example - each iteration involves a huge amount of computation and tremendous amounts

of resources. A little overhead to constrain the loop to k = 1 would be highly advantageous

for a small machine. Some of the inner loops in this program demonstrate another important

situation; they are small and have little useful unfolding, but are so deeply nested that a small

amount of overhead is amplified dramatically. We observed above that there could be only

k - 1 waves of activity in the recycle region, and in the schema in Figure A.2 this region is kept

to a minimum. Pushing Term(i)i+l down toward the bottom of the loop reduces the effective

unfolding of the loop to k - 1 iterations. This would improve the token storage, I-structure

storage, and deferred-read behavior of Simple, although two iteration numbers (or activation

frames) would still have to be allocated to the outer loop.

To execute a loop with a single iteration number, it is necessary either to introduce a second

completion point and a second gate, or to form an equivalent loop with a single circulating

variable. To explore the first option, suppose gates are placed on the arcs at the bottom of

the loop. These gates are controlled by termination detection on the switches. (L-switches

are not required, since k = 1.) This ensures that no token can enter the predicate until all

the I-switches have fired, i.e., until no tokens remain in the predicate. In addition, we build

termination detection on the outputs of the gates at the bottom of the loop. This is used to gate

the predicate. Thus, no token can enter the body until all tokens from the previous iteration

have left it. The schema is shown in Figure A.10. For the outer loop of Simple this overhead

is quite tolerable, since the amount of computation per iteration is so large. This schema has

been implemented in the version of the Id compiler used for the single processor prototype of

the Monsoon dataflow machine.
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To explore the second option, notice that a loop with a single I-switch, including termination

signals, satisfies the conditions discussed above for the 1-bounded loop, a priori. At the time

a token enters the body, there can be no tokens in the predicate, since the I-switch fired. At

the time a token leaves the body and enters the predicate, there can be no more tokens in the

body. For a loop with a single loop variable and nodes that generate signals, we simply gate the

signals generated in the predicate into the input of the i-switch and gate signals generated in

the body into the circulating value. For a loop with multiple loop variables, we have to pack all

the loop variables into a structure and tie signals into the remaining composite loop variable.

In an ETS machine, we can store each of the loop variables at the bottom of the loop, and

circulate only the signal that reflects the completion of the stores. For some of the inner loops

in Simple that are nested deeply and are quite small, we will want to compile the tightest code

possible and use whatever tricks the architecture allows.

A.4 k-Loops in the Program Graph

In developing the Id compiler, Traub introduced a powerful high-level representation of dataflow

programs, called the Program Graph[851. The various graph schema are represented by encap-

sulators, which preserve the hierarchical structure of the program, have well-defined semantics,

and can be expanded into machine graphs for a particular dataflow architecture. Optimizations

on the program graph are very powerful, beczuse entire program constructs can be manipu-

lated. This is particularly important when code motion is involved, as in hoisting invariants out

of loops. The loop node in Traub's program graph does not take a position on whether loops

are k-bounded or not. In generating a TTDA machine graph for a loop node, the k-loop schema

described in Section A.1 is realized. This is perhaps adequate when the target machine is the

TTDA because allocation of new iterations simply involves producing a trigger token carrying

the appropriate iteration number. However, when viewing iterations as resources, as in an ETS

context where each iteration has a corresponding physical activation frame, we would like to be

able to represent and manipulate the allocation and deallocation of iterations at the program

graph level itself. To this end, we outline a strategy for extending Traub's program graphs to

provide a framework for expressing the resource allocation/deallocation aspect of k-bounded

loops.
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The loop node in the program graph has a pair of interior surfaces encapsulating the loop

predicate and loop body, respectively, as shown in Figure A.11. The inputs to the predicate

are the ncxtified variables and the loop constants. The nextified variables pass through to the

middle arm, along with the result of the predicate. The inputs to the body are the nextified

variables and loop constants. The outputs of the body are the nextified variables for the next

iteration. The middle arm of the loop node essentially is translated into I-switches and the

u uttr portion into the interconnection via merges.

Loop Vars and Constants

Constants Vars

Loop LOOP NeLxp
SResults n

Loop
LppP Next Constants

Body

Next

Vars

Figure A.11: Traub's Program Graph Loop Node

For a loop that executes n iterations, the predicate portion is activated n + I times and the

body is activated n times. For k-loops there is also a portion of the graph that is activated k

tinies prior to loop execution (setup) and a portion that is activated k times after loop execution

(cleanup). To reflect this, the loop node is expanded to provide two additional interior surfaces.
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As for the loop node, the minutia of interconnecting these graphs for a particular architecture

is abstracted into the program graph node.

K Loop Vars and Constants

K Const Vars

Loop Setup k-LOOP Next LooptI I I xtr
red !Vars Costs

read Setup Pe

Loop Exec

ILoop CleanI
L Next 11 Loop

Loop Apply Vars ' Consts

Cleanup BdNt Body

Vars I"V

Figure A.12: Proposed Program Graph k-Loop Node

Initially, the setup and cleanup regions are empty, but as we perform optimizations and

transform the k-loop node into a machine graph, code is moved into these regions. As a simple

example, consider the step in which loop constants are transformed into activation frame entries.

In the body and predicate, where a loop constant is provided as input to a node, the constant

is replaced by a local fetch operation. The loop constant input is moved to the setup surface

and connected to a local store. Thus, all the loop constants are stored in the activation frame

during loop setup. If the slots for loop constants need to be reset before deallocating the frame,

a corresponding reset-slot operation would appear within the cleanup surface. When the k-loop

node is expanded into an application schema, the presence of the setup and cleanup surfaces
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play an important role. Invocation of a loop is now a three-step process: setup, exec, cleanup.

Thus, a loop-apply can be represented as a sequence of three operation; the output of the

loop-setup is an initialized ring of frames and the output of the loop-ezec is a ring ready to

deallocated or reactivated. The loop constants appearing at the setup surface become inputs

to the loop-setup node.

Once this separation is established, it is possible to lift the loop setup for a nested k-bounded

loop into the enclosing loop, if the k-bounds are established upon invocation of the outer loop.

The loop-setup node that builds a ring for the inner loop is shifted into the setup region of the

outer loop. Thus, a ring of rings is formed. However, in doing this the loop constants for the

inner loop may need to be stratified into two groups: those constant over the outer loop and

those constant only over an invocation of the inner loop. Those in the first category can be

stored during the outer loop setup. A vestige of the original loop-setup remains to store the

second group of constants.

A.5 Structure Recycling

In Chapter 3, we introduced the idea of recycling data structures within the graph in a regular

fashion. In this section, the details of this process are presented. We discuss a schema, the

s-loop, for recycling structures built on top of the k-loop schema. It allows the number of

structures to be controlled independently of the loop bound, which is important for certain

kinds of experimentation, although usually the number of structures will be closely related

to k. The basic strategy for structure recycling can be folded into the k-loop schema more

intimately, but this requires that the setup and cleanup code be embellished significantly. The

mechanism presented here was used to generate the profiles in Figure 3.6.

A central concept in the s-loop is the structure bank, an array holding up to s empty

structures. (This functions essentially like the iteration control arc in the k-loop schema, but is

initialized with a fixed number of empty structures.) A structure is withdrawn from the bank,

filled, read, cleared, and finally deposited back. The loop forming the structure recurrence

circulates a pointer, rptr, into the bank to ensure that structures are used in an orderly

(deadlock free) fashion. The general form of the first-order s-loop body is shown in Figure A.13.

The code for k-bounding is not shown, as it is independent of structure recycling. The schema
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admits the following invariants:

1. The bank contains only empty structures.

2. If iteration i withdraws and fills structure j, structure j will be withdrawn before iteration

i + 1 withdraws structure (j + 1) mod s.

3. At iteration boundaries, rptr points to a hole in the bank corresponding to the current

structure and all other bank slots are determined to be filled eventually with empty

structures.

A corollary of point 2 is that iteration i will withdraw its structure before iteration i+s attempts

to withdraw it.

The bank is initially filled with empty structures, except for a hole in the position referenced

by the initial value of rptr. The initial structure will fill this hole after its first use within the

loop is complete. The loop circulates some collection of loop variables, including a structure,

X. One additional loop variable is introduced, rptr, which specifies the hole in the bank corre-

sponding to the current value of 1. The bank is assumed to be in the loop constant area. rptr

is incremented, modulo s, to get the position of the structure that is to be filled, Vptr. wptr is

used to withdraw an empty structure from the bank. This is fed into the heart of the loop body,

which transforms a structure into a new structure of the same size and shape, where an allocate

would be in the standard formulation. The newly withdrawn structure becomes NEXT 1. The

graph for the transform produces a signal dead 1, indicating that all reads and writes against

the old structure X have been issued. This is used to trigger the clearing of that structure.

When the structure is cleared, it is deposited at rptr. (A given structure cycles through the

bank slots as it is reused.) The descriptor for the new structure is used to gate wptr, before

it can become NEXT rptr, to ensure the second invariant. When the loop completes, the bank

will again be filled with empty structures, except for the hole corresponding to the final value of

X at the final value of rptr. The setup and cleanup of the bank are represented by the obvious

loop. Note that the cleanup need not be explicitly triggered by completion of the loop proper,

but only by the final value of rptr, which gives the disposition of all entries in the bank.

Hoisting structure recycling so that a bank of structures can be used for many invocations

of an s-loop is straightforward. The bank initialization is lifted into the setup of the outer loop

and the deallocation into the cleanup. Successive invocations of the s-loop for a given bank are
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stitched together using the rptr. There is no need to explicitly test for completion of activity

under one use of a bank before using it again, the availability of the rptr is sufficient. All

other structures are either empty and in the bank or still in use and still withdrawn. The new

invocation of the s-loop will wait if it tries to use a structure that is still withdrawn.

To avoid extraneous allocations we can initialize the bank with a special value and test for

this value at the withdraw point. If the entry in the bank is the special value, the allocation is

performed.
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Appendix B

Estimating Token Storage

In this appendix, we develop a practical technique for analyzing the resource requirements of

dataflow graphs. The space of legal configurations of a dataflow graph can be described by a

collection of linear constraints, one per arc in the graph, and worst-case resource requirements

can be obtained by maximizing a cost function representing the amount of resource used in a

given configuration over this space. We focus first on token storage requirements, which requires

the most detailed analysis, and then apply the techniques developed there to other resources.

To describe the space of legal configurations of a dataflow graph, we consider the relation-

ships between adjacent nodes. The basic firing rule states that a node fires when a token is

present on each of its input arcs, and upon firing it produces a token on each of its output arcs.

Thus, if node i is connect to node j by a data dependence arc (i,j), then node j can only fire

if i does.

Theorem 6 Given an acyclic dataflow graph G = (V, E) without conditionals let F(i)c denote

the number of times node i E V fires in a given configuration c. Then in any legal configuration

F(j) < F(i),V(i,j) E E and any configuration satiqfying these constraints is achievable in a

legal ezecution sequence.

The number of tokens on arc (i,j) in a given configuration is simply the difference in the

number of times the two nodes fire, plus the number of tokens on the arc initially. Restating

this in terms of nodes, the number of tokens in existence in configuration c is

Z outdegreei - indegreei,
iEV

plus the number of tokens in the graph initially.
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B.1 Linear Constraint Systems to Model Resource Usage

For an acyclic graph without conditionals, we set up a linear program to determine the worst-

case token storage requirement as follows. Augment the graph G = (V,E) with dummy source

node v0 and dummy sink node v+,, where n = IIVII, connect v0 to each input node in the

graph, and connect each output node to v,+,.

Linear Program 1 Mazimize Eijv ciF(i), where ci = outdegreei - indegreei,

subject to:

F(j) - F(i) < O,V(i,j) E E,

F(O) - F(n + 1) _ 1, and

F(i) _ 0, Vi E V.

The second constraint is equivalent to introducing an additional arc from the dummy sink

to the dummy source and placing a single token on this arc initially. For bounded loop graphs,

this feedback arc is part of the graph initially, and we do not need to introduce the dummy

source and sink nodes. For a cyclic code-block, take G = (VE) to be the loop portion of the

graph, i.e., excluding prelude and postlude. Let M C V be the set of merge nodes, ®, at the

top of the loop. Define IT(i,) as the number of tokens on arc (i,j) in the initial configuration.

Thus, for a k-bounded loop,
I ffiE M,

IT(i,) k if i = D(k) and j = L-gate, and

0 otherwise

The linear program is as follows:

Linear Program 2 Mazimize ZiEV cF(i) + Z(ij)EE IT(ij),

where ci = outdegreei - indegreei, subject to:

F(j) - F(i) K IT(i,j),V(i,j) E E, and

F(i) _ O, Vi E V.

This formulation in standard form; we put them in canonical form by introducing a slack

variable S(ij) for each (i,j) E E, so that the Simplex algorithm can be used to find an optimal

solution. The slack variable for an arc represents the number of tokens on the arc. The cost

associated with a slack variable is zero. Thus, we have the following linear program in canonical

form.
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Linear Program 3 Mazimize iFev ciF(i)+ '(iJ)EE IT(ij), where ci = outdegreei-indegreei,

subject to

F(j) - F(i) + S(ij) = IT(i,),V(i,j) E E,

F(i) 0, Vi E V, and

S(ij) >0, V(i, j) E E.

An initial basic feasible solution is obtained by taking the slack variables as the basis, with

S(i'j) = IT(ij). The optimal solution can be obtained with the Simplex algorithm and will

be integral, since the constraint matrix for the linear program above is totally unimodular[73].

However, the linear programs obtained in this way are very large. A code block with 300 nodes

is not unusual, and, since we typically see 1.6 arcs per node, this implies a linear program

with approximately 500 rows and 800 columns. Other techniques for solving these constraint

systems are available, since the formulation is the dual of a min-cost flow problem, but these

techniques are time-consuming on a problem this size, as well. Dramatic improvements can be

made by reducing the graph to a much smaller one with equivalent worst-case resource behavior,

however.

B.2 Reduced Constraint Graphs

Given a dataflow graph, we generate a smaller graph with the same worst-case resource behavior

using two local transformations: arc bundling and tree compression, explained below. In effect,

this reduction eliminates the trivial parts of the graph that could not be involved in the worst-

case configuration, while preserving the essential dependencies. It typically results in a ten-fold

reduction in each dimension of the constraint matrix, making the use of linear programming

techniques to reach the final solution quite practical.

The linear program described above is slightly inaccurate, because a dataflow graph is a

multigraph, allowing multiple arcs between a pair of nodes. In practice, this is not a problem,

because we simply maintain a row for each. The second constraint expresses no new information,

and the cost coefficients reflect the number of tokens that pass between the pair nodes correctly.

We can eliminate some overhead by collapsing the redundant arcs into a single bundle, weighted

by the number of arcs it contains.

Lemma 7 (Arc bundling) Let resource constraint graph G = (V, E, W, IT), where w(ij) is the
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number of arcs in a bundle (i,j) and IT(i,j) is the number of tokens initially present on each of

the arcs in bundle (i,j). Suppose G contains two bundles between a pair of nodes (i,j) with the

same number of initial tokens, then the reduced graph G' obtained from G by collapsing these

into a single bundle with weight equal to the sum of the pair has the same worst-case token

storage as G.

Suppose bF(i,j) = F(i) - F(j) > 0 in the worst-case configuration. Then the number of

tokens implied by the two bundles is simply the sum of their weights multiplied by 6F(ij).

The same configuration is a solution in G', with the same cost. G' does not allow any

configurations beyond those allowed for G, so this solution is optimal for G'. E0

The resource constraint graph is obtained trivially from the dataflow graph by taking the

weights to be unity. Bundling is important, not because redundant arcs are common in the

dataflow graph, but because they occur frequently when tree compression is performed.

Lemma 8 (Broadcast- Tree compression) Let G = (V, E, W, IT) be a resource constraint graph

and suppose node j is such that:

(a) Indegreej = 1, (i,j) e E, (j, k1 ),...,(j,k,) E E,

(b) w(,,) < Ed=1 W(j, kd), and

(c) IT(i,.) = 0.

Then, the graph G' obtained by eliminating node j and adding arcs (i, kd, W(,,kd), ITj,k,)), for

d = 1..n has equivalent worst-case token storage.

Suppose G meets the conditions in the lemma, then Arc (ij) cannot be occupied in the

worst-case configuration; otherwise, a configuration with greater token storage would be

obtained by "firing" node j. The only configurations allowed by G and not by G are those

where tokens occupy this arc, so the worst-case configuration of G is obtained in G'. It is

optimal for G' because all configurations in G are legal in G. The initial configuration of

G is valid for G', by condition (c). 1l

Lemma 9 (Reduction- Tree Compression) Let G = (V, E, W, IT) be a resource constraint graph

and suppose node j is such that:

(a) Outdegreei = 1, (i,j) E E, (kj,i),...,(k,,i) E E,
(b) w(ij) < En w(k,), and
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(c) IT(,,j) = 0.

Then, the graph G' obtained by eliminating node i and adding arcs (kd, j, w(k8 ,i), IT(kd,i)), for

d = 1..n has equivalent worst-case token storage.

Same as above. C1

These two transformations are shown graphically in Figure B.1. Each time a tree com-

pression operation is performed, an opportunity for arc bundling may arise, since an arc may

already exist from the parent of the eliminated node to one of its children. A single pass over

the graph, in any order, suffices to compress all the trees originally embedded in the graph into

their root. The complexity of this is more than linear in the size of the graph, because the

branching factor may increase as the reductions are performed, but it is at most O(IjVIIIIEII).

However, a single pass does not necessarily find all possible reductions, because new trees arise

as nodes are eliminated. In practice, a single pass yields constraint systems small enough that

the solution is obtained in less time than it takes to generate the graph. Figure B.2 shows

the amount of compression achieved on the code-blocks in a large program.' On the average,

the direct formulation of the linear program would yield a 126 x 210 tableau, but with tree

compression this is reduced to 16 x 23.

B.3 Conditionals

There are a number of ways to handle conditionals. The behavior of the conditional, i.e., that

data is passed only to one arm or the other, can be modeled by a collection of constraints.

Unfortunately, the result constraint matrix is no longer unimodular. This means the optimal

solution may not be integral, and, hence, is no longer a tight bound on the storage requirements.

The brute force approach is to generate graphs for all possible settings of the conditionals

and pick the worst. These two approaches can be combined in a branch-and-bound strategy.

Alternatively, the conditional can be approximated by a graph which charges for both arms and

ignores some of the dependencies, much as for the application construct discussed below. The

numbers presented here were obtained by simply following the "true" side, and are optimistic

in some cases.

'The program is an older version of the Simple code. It is expressed in a lower-level programming style than
the version s.adied in Chapter 8 and includes fewer code-blocks.
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Figure B.1: Tree Compression Transformations
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Code-Block Name Nodes Arcs Rows Cols
Simple 267 397 83 108
Make-Zero-Struct 65 87 3 5
Boundary-Node-Reflection 315 501 19 29
Boundary-Node-Reflection-0 65 91 11 16
Boundary-Node-Reflection- 1 73 99 11 16
Reflect-Node 35 49 10 15
Boundary-Zone-Reflection 166 275 3 5
Boundary-Zone-Reflection-0 62 91 17 25
Boundary- Zone- Reflection- 1 55 88 17 25
Velocity-Position 68 97 11 16
Velocity-Position-0 95 143 18 26
Hydro-Work-On-Boundary 90 137 3 5
Hydro-Work-On-Bcundary-0 67 97 11 16
Hydro-Work-On-Boundary- 1 87 117 11 16
Hydro-Energy 117 169 26 37
Hydro-Energy-0 230 345 43 60
Artificial-Viscosity 155 236 55 75
Conduction 421 632 3 5
Conduction-O 17 23 II 16
Conduction-1 63 93 11 16
Conduction-1-0 33 47 13 19
Conduction-i-1 18 24 11 16
Conduction-2 65 97 11 16
Conduction-2-0 18 24 11 16
Conduction-2-1 37 51 13 19
Conduction-3 68 99 29 41
Conduction-3-0 88 128 30 43
Conduction-4 44 62 11 16
Conduction-4-0 34 47 11 16
Conduction-5 35 48 11 16
Conduction-5-0 34 47 11 16
Boundary-Heat-Flow 57 79 3 5
Boundary-Heat-Flow-0 23 29 11 16
Boundary-Heat-Flow-1 23 29 11 16
Invert- Energy-Theta-Function 82 116 23 31
Polynomial 57 87 3 5
Table-Look-Up 28 37 3 5
Table-Look-Up-0 16 22 12 17
Table-Look-Up-i 16 22 12 17

AVERAGE 84.3 124.71 15.8 [ 22.5I

Figure B.2: Effects of Tree Compression and Bundling
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B.4 Application Constructs

The application of a function or loop to a number of arguments in a dataflow program is

represented in a dataflow machine graph as shown in Figure B.3.a. A Get-Context instruction,

triggered by something in its environment, causes a contezt for the specified code-block to be

allocated and passes a data item representing this context to instructions that send the argument

values to the new context. The Form-Tag instruction forms a data item representing the tag of

the first of a sequence of instructions that are to receive the results. This value is passed to the

new context as argument zero. When all the results and a signal have been received from the

new context, the context is released. The instructions that send arguments have no output arcs

and the instructions that receive results have no input arcs, so special attention is required in

forming the constraint graph. Code-block invocations are non-strict, so computation may begin

before any of the arguments are received. In the extreme case, all the results are returned as

soon as the context is allocated. We know only that all the arguments must be sent before the

Release-Context can be enabled. We capture these minimal dependencies by introducing zero

weight arcs as shown in Figure B.3.b. The receivers take an input from the node that sends

the return tag. The other senders are connected to the Release-Context.

B.5 Tokens per Iteration

The- token storage requirement for a k-bounded loop can be obtained by solving the linear

program for k = 2, i.e., one token on the arc controlling the gate and then performing sensitivity

analysis on the final tableau[20]. Note, that the tree compression algorithm will not remove

the edge between the D(k) and the L-gate, because it has non-zero initial value. The row r

corresponding to this arc initially contained 1 on the right-hand-side (RHS), an entry for the two

nodes, and an entry for the slack variable S,. The column corresponding to S, initially contained

all zeros, except the unit entry in row r. Thus, the cost coefficient C,. corresponding to St in the

final tableau gives the cumulative scaling applied to row r in forming linear combinations with

the cost row. C, is the change in the objective function per unit increase in the initial RHS value

of row r, i.e., per unit increase in k. The range for which this scale factor is valid is determined

by exanining the remaining entries in the column for S,. If any of them are negative, increasing

the initial RHS of row r decreases the RHS of these rows in the final tableau.
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Figure B.3: Dataflow Machine Graph and Constraint Graph for Code-Block Application

The final basis is feasible as long as the RHS remains non-negative. A ratio test is applied

to determine the column which leaves the basis, and a pivot is performed to produce a new

basis. In practice, the range is almost always infinite, as the optimal solution established with

k = 2 is a kind of steady state. It is possible, though difficult, to generate loops with a number

of loop-variable dependence cycles of different lengths, so the behavior is not linear in k for a

fixed range of values. For values of k greater than the number of loop variables, the behavior

is linear.

Applying these techniques to the old Simple version, we get the token storage per code-block

given in Figure B.4. For code-blocks containing loops, only the loop portion is considered, not

the code around the loop.

B.6 Entire Programs

In the absence of general recursion, the token storage requirements of large portions of a pro-

gram, or even entire programs, can be derived by first constructing the static invocation tree,
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Code-Block Name Tokens (k =2) per Iteration
Simple 472 235
Boundary- Node- Reflection 275 _______

Boundary- Node- Reflection- 0 89 44
B oundary- Node- Reflection-i1 89 44
Reflect- Node 16
Boundary- Zone- Reflection 161 _______

Boundary-Zone-Reflection-0 51 25
Boundary- Zone- Reflection-i1 57 28
Velocity- Position 111 55
Velocity- Position- 0 79 39
Hydro- Work-O n- Boundary 100 _______

Hydro-Work-On-Boundary-0 61 30
H ydro-Work-O n- Boundary-i1 61 30
Hydro-Energy 189 94
Hydro-Energy-0 301 i5o
Artificial-Viscosity 53 ________

Conduction 361 ________

Conduction-0 13 6
Conduction-i 93___________ 46

Conduction- 1-0 27_______ 13
Conduction-i-i 1 6
Conduction-2 101______ 50
Conduction-2-0 13______ 6
Conduction-2-1 27______ 13
Conduction-3 98______ 48
Conduction-3-O 118_____ 58
Conduction-4 5929
Conduction-4-0 2713
Conduction-5 4723
Conduction-5-0 27______ 13
Boundary- Heat-Flow 56 ______

Boundary-Heat-Flow-0 136
Boundary-Heat-Flow-i 13 6
Invert- Energy-Theta-Fu nction 123 60
Polynomial 38
Table-Look-Up 20 _______

Table- Look- Up-0 10 5
1Table- Look- Up-i1 10 5

Figure B.4: Worst-Case Tokens Storage for Code-Blocks in Old Simple
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and solving the token storage requirements of each node, from the leaves upward. Obviously,

this approach breaks down in the presence of general recursion or higher-order functions. Sup-

pose the graph being analyzed invokes code-block F and the requirements of F are known. The

arc between the Get-Context and the Return-Context for the application of F can be weighted

by the worst-case requirement of F. This is conservative because it ignores all the constraints

within F. Analysis of F could yield, in many cases, dependence relations between inputs and

outputs, but what we would really need is the token storage associated with each combina-

tion of inputs present or not present and each combination of results produced or not. This

is expensive to compute and difficult to summarize. If we know that F performs little useful

computation without particular arguments being available, it would make sense to trigger the

Get-Context by these arguments. This would make the constraint system technique more accu-

rate and reduce the token storage requirements of the program. A difficulty remains, however,

because the cost of the worst-case configuration of a code-block, in general, depends on the

loop parameters of its subordinates.

In the absence of a complete dependence summary of an activation, weighting the return

context arc is tantamount to charging for the worst-case of the subordinate code-blocks, in

addition to the worst-case configuration of the code-block under analysis. Estimating resources

under this more conservative strategy is straight-forward. We analyze each code-block in isola-

tion, and then work up the call-tree augmenting each with the requirements of its subordinates.

The various loop parameters can be carried along symbolically.
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